Skip to main content

Advertisement

Log in

Transcriptional control of natural killer cell differentiation and function

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Gene expression can be modulated depending on physiological and developmental requirements. A multitude of regulatory genes, which are organized in interdependent networks, guide development and eventually generate specific phenotypes. Transcription factors (TF) are a key element in the regulatory cascade controlling cell fate and effector functions. In this review, we discuss recent data on the diversity of TF that determine natural killer (NK) cell fate and NK cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Russell L, Garrett-Sinha LA (2010) Transcription factor Ets-1 in cytokine and chemokine gene regulation. Cytokine 51:217–226

    Article  PubMed  CAS  Google Scholar 

  2. Barton K et al (1998) The Ets-1 transcription factor is required for the development of natural killer cells in mice. Immunity 9:555–563

    Article  PubMed  CAS  Google Scholar 

  3. Medina KL et al (2004) Assembling a gene regulatory network for specification of the B cell fate. Dev Cell 7:607–617

    Article  PubMed  CAS  Google Scholar 

  4. Colucci F et al (2001) Differential requirement for the transcription factor PU.1 in the generation of natural killer cells versus B and T cells. Blood 97:2625–2632

    Article  PubMed  CAS  Google Scholar 

  5. Lacorazza HD et al (2002) The ETS protein MEF plays a critical role in perforin gene expression and the development of natural killer and NK-T cells. Immunity 17:437–449

    Article  PubMed  CAS  Google Scholar 

  6. Szabo SJ et al (2002) Distinct effects of T-bet in TH1 lineage commitment and IFN-gamma production in CD4 and CD8 T cells. Science 295:338–342

    Article  PubMed  CAS  Google Scholar 

  7. Townsend MJ et al (2004) T-bet regulates the terminal maturation and homeostasis of NK and Valpha14i NKT cells. Immunity 20:477–494

    Article  PubMed  CAS  Google Scholar 

  8. Hosoya T, Maillard I, Engel JD (2010) From the cradle to the grave: activities of GATA-3 throughout T-cell development and differentiation. Immunol Rev 238:110–125

    Article  PubMed  CAS  Google Scholar 

  9. Samson SI et al (2003) GATA-3 promotes maturation, IFN-gamma production, and liver-specific homing of NK cells. Immunity 19:701–711

    Article  PubMed  CAS  Google Scholar 

  10. Vosshenrich CA et al (2006) A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127. Nat Immunol 7:1217–1224

    Article  PubMed  CAS  Google Scholar 

  11. Lohoff M et al (2000) Deficiency in the transcription factor interferon regulatory factor (IRF)-2 leads to severely compromised development of natural killer and T helper type 1 cells. J Exp Med 192:325–336

    Article  PubMed  CAS  Google Scholar 

  12. Taki S, Nakajima S, Ichikawa E, Saito T, Hida S (2005) IFN regulatory factor-2 deficiency revealed a novel checkpoint critical for the generation of peripheral NK cells. J Immunol 174:6005–6012

    PubMed  CAS  Google Scholar 

  13. Quong MW, Romanow WJ, Murre C (2002) E protein function in lymphocyte development. Annu Rev Immunol 20:301–322

    Article  PubMed  CAS  Google Scholar 

  14. Yokota Y et al (1999) Development of peripheral lymphoid organs and natural killer cells depends on the helix–loop–helix inhibitor Id2. Nature 397:702–706

    Article  PubMed  CAS  Google Scholar 

  15. Ikawa T, Fujimoto S, Kawamoto H, Katsura Y, Yokota Y (2001) Commitment to natural killer cells requires the helix–loop–helix inhibitor Id2. Proc Natl Acad Sci USA 98:5164–5169

    Article  PubMed  CAS  Google Scholar 

  16. Boos MD, Yokota Y, Eberl G, Kee BL (2007) Mature natural killer cell and lymphoid tissue-inducing cell development requires Id2-mediated suppression of E protein activity. J Exp Med 204:1119–1130

    Article  PubMed  CAS  Google Scholar 

  17. Ramirez K, Kee BL (2010) Multiple hats for natural killers. Curr Opin Immunol 22:193–198

    Article  PubMed  CAS  Google Scholar 

  18. Schotte R et al (2010) Synergy between IL-15 and Id2 promotes the expansion of human NK progenitor cells, which can be counteracted by the E protein HEB required to drive T cell development. J Immunol 184:6670–6679

    Article  PubMed  CAS  Google Scholar 

  19. Gascoyne DM et al (2009) The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development. Nat Immunol 10:1118–1124

    Article  PubMed  CAS  Google Scholar 

  20. Liu P et al (2003) Bcl11a is essential for normal lymphoid development. Nat Immunol 4:525–532

    Article  PubMed  CAS  Google Scholar 

  21. Li P et al (2010) Reprogramming of T cells to natural killer-like cells upon Bcl11b deletion. Science 329:85–89

    Article  PubMed  CAS  Google Scholar 

  22. Di Santo JP (2010) Immunology. A guardian of T cell fate. Science 329:44–45

    Article  PubMed  CAS  Google Scholar 

  23. Wilkinson B et al (2002) TOX: an HMG box protein implicated in the regulation of thymocyte selection. Nat Immunol 3:272–280

    Article  PubMed  CAS  Google Scholar 

  24. Aliahmad P, de la Torre B, Kaye J (2010) Shared dependence on the DNA-binding factor TOX for the development of lymphoid tissue-inducer cell and NK cell lineages. Nat Immunol 11:945–952

    Article  PubMed  CAS  Google Scholar 

  25. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S (2008) Functions of natural killer cells. Nat Immunol 9:503–510

    Article  PubMed  CAS  Google Scholar 

  26. Colonna M (2009) Interleukin-22-producing natural killer cells and lymphoid tissue inducer-like cells in mucosal immunity. Immunity 31:15–23

    Article  PubMed  CAS  Google Scholar 

  27. Szabo SJ et al (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100:655–669

    Article  PubMed  CAS  Google Scholar 

  28. Glimcher LH, Townsend MJ, Sullivan BM, Lord GM (2004) Recent developments in the transcriptional regulation of cytolytic effector cells. Nat Rev Immunol 4:900–911

    Article  PubMed  CAS  Google Scholar 

  29. Lord GM et al (2005) T-bet is required for optimal proinflammatory CD4+T-cell trafficking. Blood 106:3432–3439

    Article  PubMed  CAS  Google Scholar 

  30. Werneck MB, Lugo-Villarino G, Hwang ES, Cantor H, Glimcher LH (2008) T-bet plays a key role in NK-mediated control of melanoma metastatic disease. J Immunol 180:8004–8010

    PubMed  CAS  Google Scholar 

  31. Rot A, von Andrian UH (2004) Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol 22:891–928

    Article  PubMed  CAS  Google Scholar 

  32. Martin-Fontecha A et al (2004) Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming. Nat Immunol 5:1260–1265

    Article  PubMed  CAS  Google Scholar 

  33. Wendel M, Galani IE, Suri-Payer E, Cerwenka A (2008) Natural killer cell accumulation in tumors is dependent on IFN-gamma and CXCR3 ligands. Cancer Res 68:8437–8445

    Article  PubMed  CAS  Google Scholar 

  34. Garrett WS et al (2007) Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell 131:33–45

    Article  PubMed  CAS  Google Scholar 

  35. Garrett WS et al (2009) Colitis-associated colorectal cancer driven by T-bet deficiency in dendritic cells. Cancer Cell 16:208–219

    Article  PubMed  CAS  Google Scholar 

  36. Jenner RG et al (2009) The transcription factors T-bet and GATA-3 control alternative pathways of T-cell differentiation through a shared set of target genes. Proc Natl Acad Sci USA 106:17876–17881

    Article  PubMed  CAS  Google Scholar 

  37. Cyster JG (2005) Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu Rev Immunol 23:127–159

    Article  PubMed  CAS  Google Scholar 

  38. Chiba K et al (1998) FTY720, a novel immunosuppressant, induces sequestration of circulating mature lymphocytes by acceleration of lymphocyte homing in rats. I. FTY720 selectively decreases the number of circulating mature lymphocytes by acceleration of lymphocyte homing. J Immunol 160:5037–5044

    PubMed  CAS  Google Scholar 

  39. Mandala S et al (2002) Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296:346–349

    Article  PubMed  CAS  Google Scholar 

  40. Walzer T et al (2007) Natural killer cell trafficking in vivo requires a dedicated sphingosine 1-phosphate receptor. Nat Immunol 8:1337–1344

    Article  PubMed  CAS  Google Scholar 

  41. Jenne CN et al (2009) T-bet-dependent S1P5 expression in NK cells promotes egress from lymph nodes and bone marrow. J Exp Med 206:2469–2481

    Article  PubMed  CAS  Google Scholar 

  42. Trotta R et al (2008) TGF-beta utilizes SMAD3 to inhibit CD16-mediated IFN-gamma production and antibody-dependent cellular cytotoxicity in human NK cells. J Immunol 181:3784–3792

    PubMed  CAS  Google Scholar 

  43. Gross O et al (2008) Multiple ITAM-coupled NK-cell receptors engage the Bcl10/Malt1 complex via Carma1 for NF-kappaB and MAPK activation to selectively control cytokine production. Blood 112:2421–2428

    Article  PubMed  CAS  Google Scholar 

  44. Tassi I et al (2008) NK cell-activating receptors require PKC-theta for sustained signaling, transcriptional activation, and IFN-gamma secretion. Blood 112:4109–4116

    Article  PubMed  CAS  Google Scholar 

  45. Page KM, Chaudhary D, Goldman SJ, Kasaian MT (2008) Natural killer cells from protein kinase C theta-/- mice stimulated with interleukin-12 are deficient in production of interferon-gamma. J Leukoc Biol 83:1267–1276

    Article  PubMed  CAS  Google Scholar 

  46. Kaisho T et al (1999) Impairment of natural killer cytotoxic activity and interferon gamma production in CCAAT/enhancer binding protein gamma-deficient mice. J Exp Med 190:1573–1582

    Article  PubMed  CAS  Google Scholar 

  47. Cooper C, Henderson A, Artandi S, Avitahl N, Calame K (1995) Ig/EBP (C/EBP gamma) is a transdominant negative inhibitor of C/EBP family transcriptional activators. Nucleic Acids Res 23:4371–4377

    Article  PubMed  CAS  Google Scholar 

  48. Davydov IV, Bohmann D, Krammer PH, Li-Weber M (1995) Cloning of the cDNA encoding human C/EBP gamma, a protein binding to the PRE-I enhancer element of the human interleukin-4 promoter. Gene 161:271–275

    Article  PubMed  CAS  Google Scholar 

  49. Ito A et al (2001) Inhibitory effect on natural killer activity of microphthalmia transcription factor encoded by the mutant mi allele of mice. Blood 97:2075–2083

    Article  PubMed  CAS  Google Scholar 

  50. Lohoff M et al (1997) Interferon regulatory factor-1 is required for a T helper 1 immune response in vivo. Immunity 6:681–689

    Article  PubMed  CAS  Google Scholar 

  51. Duncan GS, Mittrucker HW, Kagi D, Matsuyama T, Mak TW (1996) The transcription factor interferon regulatory factor-1 is essential for natural killer cell function in vivo. J Exp Med 184:2043–2048

    Article  PubMed  CAS  Google Scholar 

  52. Taki S et al (1997) Multistage regulation of Th1-type immune responses by the transcription factor IRF-1. Immunity 6:673–679

    Article  PubMed  CAS  Google Scholar 

  53. Zheng W, Flavell RA (1997) The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89:587–596

    Article  PubMed  CAS  Google Scholar 

  54. Wahl SM, Wen J, Moutsopoulos NM (2006) The kiss of death: interrupted by NK-cell close encounters of another kind. Trends Immunol 27:161–164

    Article  PubMed  CAS  Google Scholar 

  55. Macian F (2005) NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol 5:472–484

    Article  PubMed  CAS  Google Scholar 

  56. Nguyen KB et al (2002) Coordinated and distinct roles for IFN-alpha beta, IL-12, and IL-15 regulation of NK cell responses to viral infection. J Immunol 169:4279–4287

    PubMed  CAS  Google Scholar 

  57. Nguyen KB et al (2000) Interferon alpha/beta-mediated inhibition and promotion of interferon gamma: STAT1 resolves a paradox. Nat Immunol 1:70–76

    PubMed  CAS  Google Scholar 

  58. Reefman E et al (2010) Cytokine secretion is distinct from secretion of cytotoxic granules in NK cells. J Immunol 184:4852–4862

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the Swiss National Science Foundation (31-109832 to AMF) and the Medical Research Council-UK (G0802068 to G.M.L. and A.M.F., and G0901737 to H.J.B.). The authors also acknowledge financial support from the Department of Health via the National Institute for Health research (NIHR) comprehensive Biomedical Research Centre award to Guy’s & St Thomas’ NHS Foundation Trust in partnership with King’s College London and King’s College Hospital NHS Foundation Trust.

Conflict of interest

The authors have no conflicting financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso Martín-Fontecha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martín-Fontecha, A., Lord, G.M. & Brady, H.J.M. Transcriptional control of natural killer cell differentiation and function. Cell. Mol. Life Sci. 68, 3495–3503 (2011). https://doi.org/10.1007/s00018-011-0800-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0800-9

Keywords

Navigation