Skip to main content

Advertisement

Log in

Mechanisms of NK cell activation: CD4+ T cells enter the scene

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Natural killer (NK) cells are innate lymphocytes involved in immunosurveillance through their cytotoxic activity and their capacity to secrete inflammatory cytokines. NK cell activation is necessary to initiate effector functions and results from a complex series of molecular and cellular events. We review here the signals that trigger NK cells and discuss recent findings showing that, besides antigen-presenting cells, T cells can play a central role in the initiation of NK cell activation in lymph nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Trinchieri G (1989) Biology of natural killer cells. Adv Immunol 47:187–376

    PubMed  CAS  Google Scholar 

  2. Cerwenka A, Lanier LL (2001) Natural killer cells, viruses and cancer. Nature Rev Immunol 1:41–49

    CAS  Google Scholar 

  3. Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC, Biassoni R, Moretta L (2001) Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 19:197–223

    PubMed  CAS  Google Scholar 

  4. Bryceson YT, March ME, Ljunggren HG, Long EO (2006) Activation, coactivation, and costimulation of resting human natural killer cells. Immunol Rev 214:73–91

    PubMed  CAS  Google Scholar 

  5. Bryceson YT, Ljunggren HG, Long EO (2009) Minimal requirement for induction of natural cytotoxicity and intersection of activation signals by inhibitory receptors. Blood 114:2657–2666

    PubMed  CAS  Google Scholar 

  6. Dustin ML, Long EO (2010) Cytotoxic immunological synapses. Immunol Rev 235:24–34

    PubMed  CAS  Google Scholar 

  7. Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP (1999) Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17:189–220

    PubMed  CAS  Google Scholar 

  8. Lieberman LA, Hunter CA (2002) Regulatory pathways involved in the infection-induced production of IFN-gamma by NK cells. Microbes Infect 4:1531–1538

    PubMed  CAS  Google Scholar 

  9. Cooper MA, Fehniger TA, Caligiuri MA (2001) The biology of human natural killer-cell subsets. Trends Immunol 22:633–640

    PubMed  CAS  Google Scholar 

  10. Raulet DH, Vance RE, McMahon CW (2001) Regulation of the natural killer cell receptor repertoire. Annu Rev Immunol 19:291–330

    PubMed  CAS  Google Scholar 

  11. Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23:225–274

    PubMed  CAS  Google Scholar 

  12. Riley JK, Yokoyama WM (2008) NK cell tolerance and the maternal-fetal interface. Am J Reprod Immunol 59:371–387

    PubMed  Google Scholar 

  13. Trowsdale J, Moffett A (2008) NK receptor interactions with MHC class I molecules in pregnancy. Semin Immunol 20:317–320

    PubMed  CAS  Google Scholar 

  14. Manaster I, Mandelboim O (2008) The unique properties of human NK cells in the uterine mucosa. Placenta 29(Suppl A):S60–S66

    PubMed  Google Scholar 

  15. Bilinski MJ, Thorne JG, Oh MJ, Leonard S, Murrant C, Tayade C, Croy BA (2008) Uterine NK cells in murine pregnancy. Reprod Biomed Online 16:218–226

    PubMed  CAS  Google Scholar 

  16. Cella M, Fuchs A, Vermi W, Facchetti F, Otero K, Lennerz JK, Doherty JM, Mills JC, Colonna M (2009) A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457:722–725

    PubMed  CAS  Google Scholar 

  17. Luci C, Reynders A, Ivanov II, Cognet C, Chiche L, Chasson L, Hardwigsen J, Anguiano E, Banchereau J, Chaussabel D et al (2009) Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin. Nat Immunol 10:75–82

    PubMed  CAS  Google Scholar 

  18. Sanos SL, Bui VL, Mortha A, Oberle K, Heners C, Johner C, Diefenbach A (2009) RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat Immunol 10:83–91

    PubMed  CAS  Google Scholar 

  19. Cupedo T, Crellin NK, Papazian N, Rombouts EJ, Weijer K, Grogan JL, Fibbe WE, Cornelissen JJ, Spits H (2009) Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nat Immunol 10:66–74

    PubMed  CAS  Google Scholar 

  20. Satoh-Takayama N, Vosshenrich CA, Lesjean-Pottier S, Sawa S, Lochner M, Rattis F, Mention JJ, Thiam K, Cerf-Bensussan N, Mandelboim O et al (2008) Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29:958–970

    PubMed  CAS  Google Scholar 

  21. Sun JC, Beilke JN, Lanier LL (2009) Adaptive immune features of natural killer cells. Nature 457:557–561

    PubMed  CAS  Google Scholar 

  22. Leibson PJ (2004) The regulation of lymphocyte activation by inhibitory receptors. Curr Opin Immunol 16:328–336

    PubMed  CAS  Google Scholar 

  23. Chini CC, Leibson PJ (2001) Signal transduction during natural killer cell activation. Curr Protoc Cytom Chapter 9, Unit 9 16

  24. Lanier LL (2008) Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol 9:495–502

    PubMed  CAS  Google Scholar 

  25. Tassi I, Klesney-Tait J, Colonna M (2006) Dissecting natural killer cell activation pathways through analysis of genetic mutations in human and mouse. Immunol Rev 214:92–105

    PubMed  CAS  Google Scholar 

  26. Bihl F, Pecheur J, Breart B, Poupon G, Cazareth J, Julia V, Glaichenhaus N, Braud VM (2010) Primed antigen-specific CD4+ T cells are required for NK cell activation in vivo upon Leishmania major infection. J Immunol 185:2174–2181

    PubMed  CAS  Google Scholar 

  27. Nguyen KB, Salazar-Mather TP, Dalod MY, Van Deusen JB, Wei XQ, Liew FY, Caligiuri MA, Durbin JE, Biron CA (2002) Coordinated and distinct roles for IFN-alpha beta, IL-12, and IL-15 regulation of NK cell responses to viral infection. J Immunol 169:4279–4287

    PubMed  CAS  Google Scholar 

  28. Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3:133–146

    PubMed  CAS  Google Scholar 

  29. Orange JS, Biron CA (1996) An absolute and restricted requirement for IL-12 in natural killer cell IFN-gamma production and antiviral defense. Studies of natural killer and T cell responses in contrasting viral infections. J Immunol 156:1138–1142

    PubMed  CAS  Google Scholar 

  30. Colonna M, Krug A, Cella M (2002) Interferon-producing cells: on the front line in immune responses against pathogens. Curr Opin Immunol 14:373–379

    PubMed  CAS  Google Scholar 

  31. Becknell B, Caligiuri MA (2005) Interleukin-2, interleukin-15, and their roles in human natural killer cells. Adv Immunol 86:209–239

    PubMed  CAS  Google Scholar 

  32. Fehniger TA, Shah MH, Turner MJ, VanDeusen JB, Whitman SP, Cooper MA, Suzuki K, Wechser M, Goodsaid F, Caligiuri MA (1999) Differential cytokine and chemokine gene expression by human NK cells following activation with IL-18 or IL-15 in combination with IL-12: implications for the innate immune response. J Immunol 162:4511–4520

    PubMed  CAS  Google Scholar 

  33. Joncker NT, Raulet DH (2008) Regulation of NK cell responsiveness to achieve self-tolerance and maximal responses to diseased target cells. Immunol Rev 224:85–97

    PubMed  CAS  Google Scholar 

  34. Ljunggren HG, Sturmhofel K, Wolpert E, Hammerling GJ, Karre K (1990) Transfection of beta 2-microglobulin restores IFN-mediated protection from natural killer cell lysis in YAC-1 lymphoma variants. J Immunol 145:380–386

    PubMed  CAS  Google Scholar 

  35. Ljunggren HG, Karre K (1990) In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today 11:237–244

    PubMed  CAS  Google Scholar 

  36. Ljunggren HG, Karre K (1985) Host resistance directed selectively against H-2-deficient lymphoma variants. Analysis of the mechanism. J Exp Med 162:1745–1759

    PubMed  CAS  Google Scholar 

  37. Karre K, Ljunggren HG, Piontek G, Kiessling R (1986) Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319:675–678

    PubMed  CAS  Google Scholar 

  38. Iizuka K, Naidenko OV, Plougastel BF, Fremont DH, Yokoyama WM (2003) Genetically linked C-type lectin-related ligands for the NKRP1 family of natural killer cell receptors. Nat Immunol 4:801–807

    PubMed  CAS  Google Scholar 

  39. Carlyle JR, Jamieson AM, Gasser S, Clingan CS, Arase H, Raulet DH (2004) Missing self-recognition of Ocil/Clr-b by inhibitory NKR-P1 natural killer cell receptors. Proc Natl Acad Sci USA 101:3527–3532

    PubMed  CAS  Google Scholar 

  40. Aldemir H, Prod’homme V, Dumaurier MJ, Retiere C, Poupon G, Cazareth J, Bihl F, Braud VM (2005) Cutting edge: lectin-like transcript 1 is a ligand for the CD161 receptor. J Immunol 175:7791–7795

    PubMed  CAS  Google Scholar 

  41. Rosen DB, Cao W, Avery DT, Tangye SG, Liu YJ, Houchins JP, Lanier LL (2008) Functional consequences of interactions between human NKR-P1A and its ligand LLT1 expressed on activated dendritic cells and B cells. J Immunol 180:6508–6517

    PubMed  CAS  Google Scholar 

  42. Rosen DB, Bettadapura J, Alsharifi M, Mathew PA, Warren HS, Lanier LL (2005) Cutting edge: lectin-like transcript-1 is a ligand for the inhibitory human NKR-P1A receptor. J Immunol 175:7796–7799

    PubMed  CAS  Google Scholar 

  43. Kumar V, McNerney ME (2005) A new self: MHC-class-I-independent natural-killer-cell self-tolerance. Nat Rev Immunol 5:363–374

    PubMed  CAS  Google Scholar 

  44. Corral L, Hanke T, Vance RE, Cado D, Raulet DH (2000) NK cell expression of the killer cell lectin-like receptor G1 (KLRG1), the mouse homolog of MAFA, is modulated by MHC class I molecules. Eur J Immunol 30:920–930

    PubMed  CAS  Google Scholar 

  45. Li Y, Hofmann M, Wang Q, Teng L, Chlewicki LK, Pircher H, Mariuzza RA (2009) Structure of natural killer cell receptor KLRG1 bound to E-cadherin reveals basis for MHC-independent missing self recognition. Immunity 31:35–46

    PubMed  Google Scholar 

  46. Ito M, Maruyama T, Saito N, Koganei S, Yamamoto K, Matsumoto N (2006) Killer cell lectin-like receptor G1 binds three members of the classical cadherin family to inhibit NK cell cytotoxicity. J Exp Med 203:289–295

    PubMed  Google Scholar 

  47. Grundemann C, Bauer M, Schweier O, von Oppen N, Lassing U, Saudan P, Becker KF, Karp K, Hanke T, Bachmann MF et al (2006) Cutting edge: identification of E-cadherin as a ligand for the murine killer cell lectin-like receptor G1. J Immunol 176:1311–1315

    PubMed  Google Scholar 

  48. Meyaard L, de Vries AR, de Ruiter T, Lanier LL, Phillips JH, Clevers H (2001) The epithelial cellular adhesion molecule (Ep-CAM) is a ligand for the leukocyte-associated immunoglobulin-like receptor (LAIR). J Exp Med 194:107–112

    PubMed  CAS  Google Scholar 

  49. Avril T, Floyd H, Lopez F, Vivier E, Crocker PR (2004) The membrane-proximal immunoreceptor tyrosine-based inhibitory motif is critical for the inhibitory signaling mediated by Siglecs-7 and -9, CD33-related Siglecs expressed on human monocytes and NK cells. J Immunol 173:6841–6849

    PubMed  CAS  Google Scholar 

  50. Markel G, Lieberman N, Katz G, Arnon TI, Lotem M, Drize O, Blumberg RS, Bar-Haim E, Mader R, Eisenbach L et al (2002) CD66a interactions between human melanoma and NK cells: a novel class I MHC-independent inhibitory mechanism of cytotoxicity. J Immunol 168:2803–2810

    PubMed  CAS  Google Scholar 

  51. Raulet DH (2003) Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 3:781–790

    PubMed  CAS  Google Scholar 

  52. Champsaur M, Lanier LL (2010) Effect of NKG2D ligand expression on host immune responses. Immunol Rev 235:267–285

    PubMed  CAS  Google Scholar 

  53. Bottino C, Castriconi R, Pende D, Rivera P, Nanni M, Carnemolla B, Cantoni C, Grassi J, Marcenaro S, Reymond N et al (2003) Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med 198:557–567

    PubMed  CAS  Google Scholar 

  54. Pende D, Castriconi R, Romagnani P, Spaggiari GM, Marcenaro S, Dondero A, Lazzeri E, Lasagni L, Martini S, Rivera P et al (2006) Expression of the DNAM-1 ligands, Nectin-2 (CD112) and poliovirus receptor (CD155), on dendritic cells: relevance for natural killer-dendritic cell interaction. Blood 107:2030–2036

    PubMed  CAS  Google Scholar 

  55. Tahara-Hanaoka S, Shibuya K, Onoda Y, Zhang H, Yamazaki S, Miyamoto A, Honda S, Lanier LL, Shibuya A (2004) Functional characterization of DNAM-1 (CD226) interaction with its ligands PVR (CD155) and nectin-2 (PRR-2/CD112). Int Immunol 16:533–538

    PubMed  CAS  Google Scholar 

  56. Hansasuta P, Dong T, Thananchai H, Weekes M, Willberg C, Aldemir H, Rowland-Jones S, Braud VM (2004) Recognition of HLA-A3 and HLA-A11 by KIR3DL2 is peptide-specific. Eur J Immunol 34:1673–1679

    PubMed  CAS  Google Scholar 

  57. Stewart CA, Laugier-Anfossi F, Vely F, Saulquin X, Riedmuller J, Tisserant A, Gauthier L, Romagne F, Ferracci G, Arosa FA et al (2005) Recognition of peptide-MHC class I complexes by activating killer immunoglobulin-like receptors. Proc Natl Acad Sci USA 102:13224–13229

    PubMed  CAS  Google Scholar 

  58. Allen RL, Raine T, Haude A, Trowsdale J, Wilson MJ (2001) Leukocyte receptor complex-encoded immunomodulatory receptors show differing specificity for alternative HLA-B27 structures. J Immunol 167:5543–5547

    PubMed  CAS  Google Scholar 

  59. Brown MG, Dokun AO, Heusel JW, Smith HR, Beckman DL, Blattenberger EA, Dubbelde CE, Stone LR, Scalzo AA, Yokoyama WM (2001) Vital involvement of a natural killer cell activation receptor in resistance to viral infection. Science 292:934–937

    PubMed  CAS  Google Scholar 

  60. Daniels KA, Devora G, Lai WC, O’Donnell CL, Bennett M, Welsh RM (2001) Murine cytomegalovirus is regulated by a discrete subset of natural killer cells reactive with monoclonal antibody to Ly49H. J Exp Med 194:29–44

    PubMed  CAS  Google Scholar 

  61. Lee SH, Girard S, Macina D, Busa M, Zafer A, Belouchi A, Gros P, Vidal SM (2001) Susceptibility to mouse cytomegalovirus is associated with deletion of an activating natural killer cell receptor of the C-type lectin superfamily. Nat Genet 28:42–45

    PubMed  CAS  Google Scholar 

  62. Smith HR, Heusel JW, Mehta IK, Kim S, Dorner BG, Naidenko OV, Iizuka K, Furukawa H, Beckman DL, Pingel JT et al (2002) Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc Natl Acad Sci USA 99:8826–8831

    PubMed  CAS  Google Scholar 

  63. Arase H, Mocarski ES, Campbell AE, Hill AB, Lanier LL (2002) Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296:1323–1326

    PubMed  CAS  Google Scholar 

  64. Mandelboim O, Lieberman N, Lev M, Paul L, Arnon TI, Bushkin Y, Davis DM, Strominger JL, Yewdell JW, Porgador A (2001) Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 409:1055–1060

    PubMed  CAS  Google Scholar 

  65. Gazit R, Gruda R, Elboim M, Arnon TI, Katz G, Achdout H, Hanna J, Qimron U, Landau G, Greenbaum E et al (2006) Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nat Immunol 7:517–523

    PubMed  CAS  Google Scholar 

  66. Guma M, Budt M, Saez A, Brckalo T, Hengel H, Angulo A, Lopez-Botet M (2006) Expansion of CD94/NKG2C+ NK cells in response to human cytomegalovirus-infected fibroblasts. Blood 107:3624–3631

    PubMed  CAS  Google Scholar 

  67. De Maria A, Fogli M, Mazza S, Basso M, Picciotto A, Costa P, Congia S, Mingari MC, Moretta L (2007) Increased natural cytotoxicity receptor expression and relevant IL-10 production in NK cells from chronically infected viremic HCV patients. Eur J Immunol 37:445–455

    PubMed  Google Scholar 

  68. Alter G, Rihn S, Walter K, Nolting A, Martin M, Rosenberg ES, Miller JS, Carrington M, Altfeld M (2009) HLA class I subtype-dependent expansion of KIR3DS1+ and KIR3DL1+ NK cells during acute human immunodeficiency virus type 1 infection. J Virol 83:6798–6805

    PubMed  CAS  Google Scholar 

  69. Hart OM, Athie-Morales V, O’Connor GM, Gardiner CM (2005) TLR7/8-mediated activation of human NK cells results in accessory cell-dependent IFN-gamma production. J Immunol 175:1636–1642

    PubMed  CAS  Google Scholar 

  70. Schmidt KN, Leung B, Kwong M, Zarember KA, Satyal S, Navas TA, Wang F, Godowski PJ (2004) APC-independent activation of NK cells by the Toll-like receptor 3 agonist double-stranded RNA. J Immunol 172:138–143

    PubMed  CAS  Google Scholar 

  71. Sivori S, Falco M, Della Chiesa M, Carlomagno S, Vitale M, Moretta L, Moretta A (2004) CpG and double-stranded RNA trigger human NK cells by Toll-like receptors: induction of cytokine release and cytotoxicity against tumors and dendritic cells. Proc Natl Acad Sci USA 101:10116–10121

    PubMed  CAS  Google Scholar 

  72. Martinez J, Huang X, Yang Y (2010) Direct TLR2 signaling is critical for NK cell activation and function in response to vaccinia viral infection. PLoS Pathog 6:e1000811

    PubMed  Google Scholar 

  73. Bryceson YT, March ME, Ljunggren HG, Long EO (2006) Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood 107:159–166

    PubMed  CAS  Google Scholar 

  74. Ortaldo JR, Winkler-Pickett R, Wigginton J, Horner M, Bere EW, Mason AT, Bhat N, Cherry J, Sanford M, Hodge DL et al (2006) Regulation of ITAM-positive receptors: role of IL-12 and IL-18. Blood 107:1468–1475

    PubMed  CAS  Google Scholar 

  75. Oppenheim DE, Roberts SJ, Clarke SL, Filler R, Lewis JM, Tigelaar RE, Girardi M, Hayday AC (2005) Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance. Nat Immunol 6:928–937

    PubMed  CAS  Google Scholar 

  76. Ogasawara K, Hamerman JA, Hsin H, Chikuma S, Bour-Jordan H, Chen T, Pertel T, Carnaud C, Bluestone JA, Lanier LL (2003) Impairment of NK cell function by NKG2D modulation in NOD mice. Immunity 18:41–51

    PubMed  CAS  Google Scholar 

  77. Wiemann K, Mittrucker HW, Feger U, Welte SA, Yokoyama WM, Spies T, Rammensee HG, Steinle A (2005) Systemic NKG2D down-regulation impairs NK and CD8 T cell responses in vivo. J Immunol 175:720–729

    PubMed  CAS  Google Scholar 

  78. George TC, Ortaldo JR, Lemieux S, Kumar V, Bennett M (1999) Tolerance and alloreactivity of the Ly49D subset of murine NK cells. J Immunol 163:1859–1867

    PubMed  CAS  Google Scholar 

  79. Tripathy SK, Keyel PA, Yang L, Pingel JT, Cheng TP, Schneeberger A, Yokoyama WM (2008) Continuous engagement of a self-specific activation receptor induces NK cell tolerance. J Exp Med 205:1829–1841

    PubMed  CAS  Google Scholar 

  80. Sun JC, Lanier LL (2008) Tolerance of NK cells encountering their viral ligand during development. J Exp Med 205:1819–1828

    PubMed  CAS  Google Scholar 

  81. Costello RT, Sivori S, Marcenaro E, Lafage-Pochitaloff M, Mozziconacci MJ, Reviron D, Gastaut JA, Pende D, Olive D, Moretta A (2002) Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia. Blood 99:3661–3667

    PubMed  CAS  Google Scholar 

  82. Sivori S, Pende D, Bottino C, Marcenaro E, Pessino A, Biassoni R, Moretta L, Moretta A (1999) NKp46 is the major triggering receptor involved in the natural cytotoxicity of fresh or cultured human NK cells. Correlation between surface density of NKp46 and natural cytotoxicity against autologous, allogeneic or xenogeneic target cells. Eur J Immunol 29:1656–1666

    PubMed  CAS  Google Scholar 

  83. De Maria A, Fogli M, Costa P, Murdaca G, Puppo F, Mavilio D, Moretta A, Moretta L (2003) The impaired NK cell cytolytic function in viremic HIV-1 infection is associated with a reduced surface expression of natural cytotoxicity receptors (NKp46, NKp30 and NKp44). Eur J Immunol 33:2410–2418

    PubMed  Google Scholar 

  84. Ohlen C, Kling G, Hoglund P, Hansson M, Scangos G, Bieberich C, Jay G, Karre K (1989) Prevention of allogeneic bone marrow graft rejection by H-2 transgene in donor mice. Science 246:666–668

    PubMed  CAS  Google Scholar 

  85. Kim S, Poursine-Laurent J, Truscott SM, Lybarger L, Song YJ, Yang L, French AR, Sunwoo JB, Lemieux S, Hansen TH et al (2005) Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 436:709–713

    PubMed  CAS  Google Scholar 

  86. Raulet DH, Vance RE (2006) Self-tolerance of natural killer cells. Nat Rev Immunol 6:520–531

    PubMed  CAS  Google Scholar 

  87. Anfossi N, Andre P, Guia S, Falk CS, Roetynck S, Stewart CA, Breso V, Frassati C, Reviron D, Middleton D et al (2006) Human NK cell education by inhibitory receptors for MHC class I. Immunity 25:331–342

    PubMed  CAS  Google Scholar 

  88. Hoglund P, Brodin P (2010) Current perspectives of natural killer cell education by MHC class I molecules. Nat Rev Immunol 10:724–734

    PubMed  Google Scholar 

  89. Held W (2008) Tolerance and reactivity of NK cells: two sides of the same coin? Eur J Immunol 38:2930–2933

    PubMed  CAS  Google Scholar 

  90. Orr MT, Lanier LL (2010) Natural killer cell education and tolerance. Cell 142:847–856

    PubMed  CAS  Google Scholar 

  91. Brodin P, Hoglund P (2008) Beyond licensing and disarming: a quantitative view on NK-cell education. Eur J Immunol 38:2934–2937

    PubMed  CAS  Google Scholar 

  92. Brodin P, Karre K, Hoglund P (2009) NK cell education: not an on-off switch but a tunable rheostat. Trends Immunol 30:143–149

    PubMed  CAS  Google Scholar 

  93. Gasser S, Raulet DH (2006) Activation and self-tolerance of natural killer cells. Immunol Rev 214:130–142

    PubMed  CAS  Google Scholar 

  94. Elliott JM, Wahle JA, Yokoyama WM (2010) MHC class I-deficient natural killer cells acquire a licensed phenotype after transfer into an MHC class I-sufficient environment. J Exp Med 207:2073–2079

    PubMed  CAS  Google Scholar 

  95. Johansson MH, Bieberich C, Jay G, Karre K, Hoglund P (1997) Natural killer cell tolerance in mice with mosaic expression of major histocompatibility complex class I transgene. J Exp Med 186:353–364

    PubMed  CAS  Google Scholar 

  96. Joncker NT, Shifrin N, Delebecque F, Raulet DH (2010) Mature natural killer cells reset their responsiveness when exposed to an altered MHC environment. J Exp Med 207:2065–2072

    PubMed  CAS  Google Scholar 

  97. Orr MT, Murphy WJ, Lanier LL (2010) ‘Unlicensed’ natural killer cells dominate the response to cytomegalovirus infection. Nat Immunol 11:321–327

    PubMed  CAS  Google Scholar 

  98. Huntington ND, Vosshenrich CA, Di Santo JP (2007) Developmental pathways that generate natural-killer-cell diversity in mice and humans. Nat Rev Immunol 7:703–714

    PubMed  CAS  Google Scholar 

  99. Vosshenrich CA, Garcia-Ojeda ME, Samson-Villeger SI, Pasqualetto V, Enault L, Richard-Le Goff O, Corcuff E, Guy-Grand D, Rocha B, Cumano A et al (2006) A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127. Nat Immunol 7:1217–1224

    PubMed  CAS  Google Scholar 

  100. Chiossone L, Chaix J, Fuseri N, Roth C, Vivier E, Walzer T (2009) Maturation of mouse NK cells is a 4-stage developmental program. Blood 113:5488–5496

    PubMed  CAS  Google Scholar 

  101. Freud AG, Yokohama A, Becknell B, Lee MT, Mao HC, Ferketich AK, Caligiuri MA (2006) Evidence for discrete stages of human natural killer cell differentiation in vivo. J Exp Med 203:1033–1043

    PubMed  CAS  Google Scholar 

  102. Hayakawa Y, Smyth MJ (2006) CD27 dissects mature NK cells into two subsets with distinct responsiveness and migratory capacity. J Immunol 176:1517–1524

    PubMed  CAS  Google Scholar 

  103. O’Leary JG, Goodarzi M, Drayton DL, von Andrian UH (2006) T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nat Immunol 7:507–516

    PubMed  Google Scholar 

  104. Cooper MA, Yokoyama WM (2010) Memory-like responses of natural killer cells. Immunol Rev 235:297–305

    PubMed  CAS  Google Scholar 

  105. Cooper MA, Elliott JM, Keyel PA, Yang L, Carrero JA, Yokoyama WM (2009) Cytokine-induced memory-like natural killer cells. Proc Natl Acad Sci USA 106:1915–1919

    PubMed  CAS  Google Scholar 

  106. Moffett-King A (2002) Natural killer cells and pregnancy. Nat Rev Immunol 2:656–663

    PubMed  CAS  Google Scholar 

  107. Vivier E, Spits H, Cupedo T (2009) Interleukin-22-producing innate immune cells: new players in mucosal immunity and tissue repair? Nat Rev Immunol 9:229–234

    PubMed  CAS  Google Scholar 

  108. Koopman LA, Kopcow HD, Rybalov B, Boyson JE, Orange JS, Schatz F, Masch R, Lockwood CJ, Schachter AD, Park PJ et al (2003) Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J Exp Med 198:1201–1212

    PubMed  CAS  Google Scholar 

  109. Hiby SE, Walker JJ, O’Shaughnessy KM, Redman CW, Carrington M, Trowsdale J, Moffett A (2004) Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J Exp Med 200:957–965

    PubMed  CAS  Google Scholar 

  110. Hanna J, Goldman-Wohl D, Hamani Y, Avraham I, Greenfield C, Natanson-Yaron S, Prus D, Cohen-Daniel L, Arnon TI, Manaster I et al (2006) Decidual NK cells regulate key developmental processes at the human fetal–maternal interface. Nat Med 12:1065–1074

    PubMed  CAS  Google Scholar 

  111. Hughes T, Becknell B, Freud AG, McClory S, Briercheck E, Yu J, Mao C, Giovenzana C, Nuovo G, Wei L et al (2010) Interleukin-1beta selectively expands and sustains interleukin-22+ immature human natural killer cells in secondary lymphoid tissue. Immunity 32:803–814

    PubMed  CAS  Google Scholar 

  112. Cella M, Otero K, Colonna M (2010) Expansion of human NK-22 cells with IL-7, IL-2, and IL-1beta reveals intrinsic functional plasticity. Proc Natl Acad Sci USA 107:10961–10966

    PubMed  CAS  Google Scholar 

  113. Crellin NK, Trifari S, Kaplan CD, Cupedo T, Spits H (2010) Human NKp44+ IL-22+ cells and LTi-like cells constitute a stable RORC+ lineage distinct from conventional natural killer cells. J Exp Med 207:281–290

    PubMed  CAS  Google Scholar 

  114. Vonarbourg C, Mortha A, Bui VL, Hernandez PP, Kiss EA, Hoyler T, Flach M, Bengsch B, Thimme R, Holscher C et al (2010) Regulated expression of nuclear receptor RORgammat confers distinct functional fates to NK cell receptor-expressing RORgammat(+) innate lymphocytes. Immunity 33:736–751

    PubMed  CAS  Google Scholar 

  115. Fernandez NC, Lozier A, Flament C, Ricciardi-Castagnoli P, Bellet D, Suter M, Perricaudet M, Tursz T, Maraskovsky E, Zitvogel L (1999) Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med 5:405–411

    PubMed  CAS  Google Scholar 

  116. Piccioli D, Sbrana S, Melandri E, Valiante NM (2002) Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J Exp Med 195:335–341

    PubMed  CAS  Google Scholar 

  117. Gerosa F, Baldani-Guerra B, Nisii C, Marchesini V, Carra G, Trinchieri G (2002) Reciprocal activating interaction between natural killer cells and dendritic cells. J Exp Med 195:327–333

    PubMed  CAS  Google Scholar 

  118. Ferlazzo G, Tsang ML, Moretta L, Melioli G, Steinman RM, Munz C (2002) Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J Exp Med 195:343–351

    PubMed  CAS  Google Scholar 

  119. Andrews DM, Scalzo AA, Yokoyama WM, Smyth MJ, Degli-Esposti MA (2003) Functional interactions between dendritic cells and NK cells during viral infection. Nat Immunol 4:175–181

    PubMed  CAS  Google Scholar 

  120. Degli-Esposti MA, Smyth MJ (2005) Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nat Rev Immunol 5:112–124

    PubMed  CAS  Google Scholar 

  121. Kassim SH, Rajasagi NK, Zhao X, Chervenak R, Jennings SR (2006) In vivo ablation of CD11c-positive dendritic cells increases susceptibility to herpes simplex virus type 1 infection and diminishes NK and T-cell responses. J Virol 80:3985–3993

    PubMed  CAS  Google Scholar 

  122. Newman KC, Riley EM (2007) Whatever turns you on: accessory-cell-dependent activation of NK cells by pathogens. Nat Rev Immunol 7:279–291

    PubMed  CAS  Google Scholar 

  123. Schleicher U, Liese J, Knippertz I, Kurzmann C, Hesse A, Heit A, Fischer JA, Weiss S, Kalinke U, Kunz S et al (2007) NK cell activation in visceral leishmaniasis requires TLR9, myeloid DCs, and IL-12, but is independent of plasmacytoid DCs. J Exp Med 204:893–906

    PubMed  CAS  Google Scholar 

  124. Lucas M, Schachterle W, Oberle K, Aichele P, Diefenbach A (2007) Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity 26:503–517

    PubMed  CAS  Google Scholar 

  125. Kang SJ, Liang HE, Reizis B, Locksley RM (2008) Regulation of hierarchical clustering and activation of innate immune cells by dendritic cells. Immunity 29:819–833

    PubMed  CAS  Google Scholar 

  126. Koka R, Burkett P, Chien M, Chai S, Boone DL, Ma A (2004) Cutting edge: murine dendritic cells require IL-15R alpha to prime NK cells. J Immunol 173:3594–3598

    PubMed  CAS  Google Scholar 

  127. Mortier E, Woo T, Advincula R, Gozalo S, Ma A (2008) IL-15Ralpha chaperones IL-15 to stable dendritic cell membrane complexes that activate NK cells via trans presentation. J Exp Med 205:1213–1225

    PubMed  CAS  Google Scholar 

  128. Fehniger TA, Cai SF, Cao X, Bredemeyer AJ, Presti RM, French AR, Ley TJ (2007) Acquisition of murine NK cell cytotoxicity requires the translation of a pre-existing pool of granzyme B and perforin mRNAs. Immunity 26:798–811

    PubMed  CAS  Google Scholar 

  129. Chaix J, Tessmer MS, Hoebe K, Fuseri N, Ryffel B, Dalod M, Alexopoulou L, Beutler B, Brossay L, Vivier E et al (2008) Cutting edge: priming of NK cells by IL-18. J Immunol 181:1627–1631

    PubMed  CAS  Google Scholar 

  130. Haeberlein S, Sebald H, Bogdan C, Schleicher U (2010) IL-18, but not IL-15, contributes to the IL-12-dependent induction of NK-cell effector functions by Leishmania infantum in vivo. Eur J Immunol 40:1708–1717

    PubMed  CAS  Google Scholar 

  131. Gerosa F, Gobbi A, Zorzi P, Burg S, Briere F, Carra G, Trinchieri G (2005) The reciprocal interaction of NK cells with plasmacytoid or myeloid dendritic cells profoundly affects innate resistance functions. J Immunol 174:727–734

    PubMed  CAS  Google Scholar 

  132. Swiecki M, Gilfillan S, Vermi W, Wang Y, Colonna M (2010) Plasmacytoid dendritic cell ablation impacts early interferon responses and antiviral NK and CD8(+) T cell accrual. Immunity 33:955–966

    PubMed  CAS  Google Scholar 

  133. Dalod M, Salazar-Mather TP, Malmgaard L, Lewis C, Asselin-Paturel C, Briere F, Trinchieri G, Biron CA (2002) Interferon alpha/beta and interleukin 12 responses to viral infections: pathways regulating dendritic cell cytokine expression in vivo. J Exp Med 195:517–528

    PubMed  CAS  Google Scholar 

  134. Granucci F, Zanoni I, Pavelka N, Van Dommelen SL, Andoniou CE, Belardelli F, Degli Esposti MA, Ricciardi-Castagnoli P (2004) A contribution of mouse dendritic cell-derived IL-2 for NK cell activation. J Exp Med 200:287–295

    PubMed  CAS  Google Scholar 

  135. Bajenoff M, Breart B, Huang AY, Qi H, Cazareth J, Braud VM, Germain RN, Glaichenhaus N (2006) Natural killer cell behavior in lymph nodes revealed by static and real-time imaging. J Exp Med 203:619–631

    PubMed  CAS  Google Scholar 

  136. Beuneu H, Deguine J, Breart B, Mandelboim O, Di Santo JP, Bousso P (2009) Dynamic behavior of NK cells during activation in lymph nodes. Blood 114:3227–3234

    PubMed  CAS  Google Scholar 

  137. Garrod KR, Wei SH, Parker I, Cahalan MD (2007) Natural killer cells actively patrol peripheral lymph nodes forming stable conjugates to eliminate MHC-mismatched targets. Proc Natl Acad Sci USA 104:12081–12086

    PubMed  CAS  Google Scholar 

  138. Borg C, Jalil A, Laderach D, Maruyama K, Wakasugi H, Charrier S, Ryffel B, Cambi A, Figdor C, Vainchenker W et al (2004) NK cell activation by dendritic cells (DCs) requires the formation of a synapse leading to IL-12 polarization in DCs. Blood 104:3267–3275

    PubMed  CAS  Google Scholar 

  139. Semino C, Angelini G, Poggi A, Rubartelli A (2005) NK/iDC interaction results in IL-18 secretion by DCs at the synaptic cleft followed by NK cell activation and release of the DC maturation factor HMGB1. Blood 106:609–616

    PubMed  CAS  Google Scholar 

  140. Brilot F, Strowig T, Roberts SM, Arrey F, Munz C (2007) NK cell survival mediated through the regulatory synapse with human DCs requires IL-15Ralpha. J Clin Invest 117:3316–3329

    PubMed  CAS  Google Scholar 

  141. Hamerman JA, Ogasawara K, Lanier LL (2004) Cutting edge: Toll-like receptor signaling in macrophages induces ligands for the NKG2D receptor. J Immunol 172:2001–2005

    PubMed  CAS  Google Scholar 

  142. Siren J, Sareneva T, Pirhonen J, Strengell M, Veckman V, Julkunen I, Matikainen S (2004) Cytokine and contact-dependent activation of natural killer cells by influenza A or Sendai virus-infected macrophages. J General Virol 85:2357–2364

    CAS  Google Scholar 

  143. Jinushi M, Takehara T, Tatsumi T, Kanto T, Groh V, Spies T, Suzuki T, Miyagi T, Hayashi N (2003) Autocrine/paracrine IL-15 that is required for type I IFN-mediated dendritic cell expression of MHC class I-related chain A and B is impaired in hepatitis C virus infection. J Immunol 171:5423–5429

    PubMed  CAS  Google Scholar 

  144. Eissmann P, Evans JH, Mehrabi M, Rose EL, Nedvetzki S, Davis DM (2010) Multiple mechanisms downstream of TLR-4 stimulation allow expression of NKG2D ligands to facilitate macrophage/NK cell crosstalk. J Immunol 184:6901–6909

    PubMed  CAS  Google Scholar 

  145. Nedvetzki S, Sowinski S, Eagle RA, Harris J, Vely F, Pende D, Trowsdale J, Vivier E, Gordon S, Davis DM (2007) Reciprocal regulation of human natural killer cells and macrophages associated with distinct immune synapses. Blood 109:3776–3785

    PubMed  CAS  Google Scholar 

  146. Welte S, Kuttruff S, Waldhauer I, Steinle A (2006) Mutual activation of natural killer cells and monocytes mediated by NKp80-AICL interaction. Nat Immunol 7:1334–1342

    PubMed  CAS  Google Scholar 

  147. Hunter CA, Ellis-Neyer L, Gabriel KE, Kennedy MK, Grabstein KH, Linsley PS, Remington JS (1997) The role of the CD28/B7 interaction in the regulation of NK cell responses during infection with Toxoplasma gondii. J Immunol 158:2285–2293

    PubMed  CAS  Google Scholar 

  148. Atochina O, Harn D (2005) LNFPIII/LeX-stimulated macrophages activate natural killer cells via CD40-CD40L interaction. Clin Diagn Lab Immunol 12:1041–1049

    PubMed  CAS  Google Scholar 

  149. Hanabuchi S, Watanabe N, Wang YH, Ito T, Shaw J, Cao W, Qin FX, Liu YJ (2006) Human plasmacytoid predendritic cells activate NK cells through glucocorticoid-induced tumor necrosis factor receptor-ligand (GITRL). Blood 107:3617–3623

    PubMed  CAS  Google Scholar 

  150. Ferlazzo G, Pack M, Thomas D, Paludan C, Schmid D, Strowig T, Bougras G, Muller WA, Moretta L, Munz C (2004) Distinct roles of IL-12 and IL-15 in human natural killer cell activation by dendritic cells from secondary lymphoid organs. Proc Natl Acad Sci USA 101:16606–16611

    PubMed  CAS  Google Scholar 

  151. Ferlazzo G, Munz C (2004) NK cell compartments and their activation by dendritic cells. J Immunol 172:1333–1339

    PubMed  CAS  Google Scholar 

  152. Fehniger TA, Cooper MA, Nuovo GJ, Cella M, Facchetti F, Colonna M, Caligiuri MA (2003) CD56bright natural killer cells are present in human lymph nodes and are activated by T cell-derived IL-2: a potential new link between adaptive and innate immunity. Blood 101:3052–3057

    PubMed  CAS  Google Scholar 

  153. Deguine J, Breart B, Lemaitre F, Di Santo JP, Bousso P (2010) Intravital imaging reveals distinct dynamics for natural killer and CD8(+) T cells during tumor regression. Immunity 33:632–644

    PubMed  CAS  Google Scholar 

  154. Buentke E, Heffler LC, Wilson JL, Wallin RP, Lofman C, Chambers BJ, Ljunggren HG, Scheynius A (2002) Natural killer and dendritic cell contact in lesional atopic dermatitis skin—Malassezia-influenced cell interaction. J Invest Dermatol 119:850–857

    PubMed  CAS  Google Scholar 

  155. Haller D, Serrant P, Granato D, Schiffrin EJ, Blum S (2002) Activation of human NK cells by staphylococci and lactobacilli requires cell contact-dependent costimulation by autologous monocytes. Clin Diagn Lab Immunol 9:649–657

    PubMed  CAS  Google Scholar 

  156. Newman KC, Korbel DS, Hafalla JC, Riley EM (2006) Cross-talk with myeloid accessory cells regulates human natural killer cell interferon–gamma responses to malaria. PLoS Pathog 2:e118

    PubMed  Google Scholar 

  157. Lapaque N, Walzer T, Meresse S, Vivier E, Trowsdale J (2009) Interactions between human NK cells and macrophages in response to Salmonella infection. J Immunol 182:4339–4348

    PubMed  CAS  Google Scholar 

  158. He XS, Draghi M, Mahmood K, Holmes TH, Kemble GW, Dekker CL, Arvin AM, Parham P, Greenberg HB (2004) T cell-dependent production of IFN-gamma by NK cells in response to influenza A virus. J Clin Invest 114:1812–1819

    PubMed  CAS  Google Scholar 

  159. Horowitz A, Newman KC, Evans JH, Korbel DS, Davis DM, Riley EM (2010) Cross-talk between T cells and NK cells generates rapid effector responses to Plasmodium falciparum-infected erythrocytes. J Immunol 184:6043–6052

    PubMed  CAS  Google Scholar 

  160. Malek TR (2008) The biology of interleukin-2. Annu Rev Immunol 26:453–479

    PubMed  CAS  Google Scholar 

  161. Cooper MA, Fehniger TA, Turner SC, Chen KS, Ghaheri BA, Ghayur T, Carson WE, Caligiuri MA (2001) Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood 97:3146–3151

    PubMed  CAS  Google Scholar 

  162. Ma DY, Clark EA (2009) The role of CD40 and CD154/CD40L in dendritic cells. Semin Immunol 21:265–272

    PubMed  CAS  Google Scholar 

  163. Quezada SA, Jarvinen LZ, Lind EF, Noelle RJ (2004) CD40/CD154 interactions at the interface of tolerance and immunity. Annu Rev Immunol 22:307–328

    PubMed  CAS  Google Scholar 

  164. Perez-Diez A, Joncker NT, Choi K, Chan WF, Anderson CC, Lantz O, Matzinger P (2007) CD4 cells can be more efficient at tumor rejection than CD8 cells. Blood 109:5346–5354

    PubMed  CAS  Google Scholar 

  165. Li Z, Pradera F, Kammertoens T, Li B, Liu S, Qin Z (2007) Cross-talk between T cells and innate immune cells is crucial for IFN-gamma-dependent tumor rejection. J Immunol 179:1568–1576

    PubMed  CAS  Google Scholar 

  166. Horowitz A, Behrens RH, Okell L, Fooks AR, Riley EM (2010) NK cells as effectors of acquired immune responses: effector CD4(+) T cell-dependent activation of NK cells following vaccination. J Immunol 185:2808–2818

    PubMed  CAS  Google Scholar 

  167. Feng CG, Kaviratne M, Rothfuchs AG, Cheever A, Hieny S, Young HA, Wynn TA, Sher A (2006) NK cell-derived IFN-gamma differentially regulates innate resistance and neutrophil response in T cell-deficient hosts infected with Mycobacterium tuberculosis. J Immunol 177:7086–7093

    PubMed  CAS  Google Scholar 

  168. Thale C, Kiderlen AF (2005) Sources of interferon-gamma (IFN-gamma) in early immune response to Listeria monocytogenes. Immunobiology 210:673–683

    PubMed  Google Scholar 

  169. Carnaud C, Lee D, Donnars O, Park SH, Beavis A, Koezuka Y, Bendelac A (1999) Cutting edge: cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J Immunol 163:4647–4650

    PubMed  CAS  Google Scholar 

  170. Fujii S, Liu K, Smith C, Bonito AJ, Steinman RM (2004) The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J Exp Med 199:1607–1618

    PubMed  CAS  Google Scholar 

  171. Ghiringhelli F, Menard C, Terme M, Flament C, Taieb J, Chaput N, Puig PE, Novault S, Escudier B, Vivier E et al (2005) CD4+ CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med 202:1075–1085

    PubMed  CAS  Google Scholar 

  172. Ghiringhelli F, Menard C, Martin F, Zitvogel L (2006) The role of regulatory T cells in the control of natural killer cells: relevance during tumor progression. Immunol Rev 214:229–238

    PubMed  CAS  Google Scholar 

  173. Terme M, Ullrich E, Delahaye NF, Chaput N, Zitvogel L (2008) Natural killer cell-directed therapies: moving from unexpected results to successful strategies. Nat Immunol 9:486–494

    PubMed  CAS  Google Scholar 

  174. Lodoen MB, Lanier LL (2006) Natural killer cells as an initial defense against pathogens. Curr Opin Immunol 18:391–398

    PubMed  CAS  Google Scholar 

  175. Fang M, Roscoe F, Sigal LJ (2010) Age-dependent susceptibility to a viral disease due to decreased natural killer cell numbers and trafficking. J Exp Med 207:2369–2381

    PubMed  CAS  Google Scholar 

  176. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, Posati S, Rogaia D, Frassoni F, Aversa F et al (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295:2097–2100

    PubMed  CAS  Google Scholar 

  177. Chan CJ, Andrews DM, Smyth MJ (2008) Can NK cells be a therapeutic target in human cancer? Eur J Immunol 38:2964–2968

    PubMed  CAS  Google Scholar 

  178. Burke S, Lakshmikanth T, Colucci F, Carbone E (2010) New views on natural killer cell-based immunotherapy for melanoma treatment. Trends Immunol 31:339–345

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronique M. Braud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bihl, F., Germain, C., Luci, C. et al. Mechanisms of NK cell activation: CD4+ T cells enter the scene. Cell. Mol. Life Sci. 68, 3457–3467 (2011). https://doi.org/10.1007/s00018-011-0796-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0796-1

Keywords

Navigation