Skip to main content

Advertisement

Log in

HIF-1 is involved in high glucose-induced paracellular permeability of brain endothelial cells

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Experimental evidence from human patients and animal models of diabetes has demonstrated that hyperglycemia increases blood–brain barrier (BBB) permeability, which is associated with increased risk of neurological dysfunction. However, the mechanism underlying high glucose-induced BBB disruption is not understood. Here we investigated the role of hypoxia-inducible factor-1 (HIF-1) in high glucose-induced endothelial permeability in vitro using mouse brain microvascular endothelial cells (b.End3). Our results demonstrated that high glucose (30 mM) upregulated the protein level of HIF-1α, the regulatable subunit of HIF-1, and increased the transcriptional activity of HIF-1 in the endothelial cells. At the same time, high glucose increased the paracellular permeability associated with diminished expression and disrupted continuity of tight junction proteins occludin and zona occludens protein-1 (ZO-1) of the endothelial cells. Upregulating HIF-1 activity by cobalt chloride increased the paracellular permeability of the endothelial cells exposed to normal glucose (5.5 mM). In contrast, downregulating HIF-1 activity by HIF-1α inhibitors and HIF-1α specific siRNA ameliorated the increased paracellular permeability and the alterations of distribution pattern of occludin and ZO-1 induced by high glucose. In addition, high glucose increased expression of vascular endothelial growth factor (VEGF), a downstream gene of HIF-1. Inhibiting VEGF improved the expression pattern of occludin and ZO-1, and attenuated the endothelial leakage. Furthermore, key results were confirmed in human brain microvascular endothelial cells. These results strongly indicate that HIF-1 plays an important role in high glucose-induced BBB dysfunction. The results will help us understand the molecular mechanisms involved in hyperglycemia-induced BBB dysfunction and neurological outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BBB:

Blood–brain barrier

HIF-1:

Hypoxia-inducible factor 1

VEGF:

Vascular endothelial growth factor

2ME2:

2-Methoxyestradiol

YC-1:

3-(5′-Hydroxymethyl-2′-furyl)-1-benzyl indazole

ZO-1:

Zona occludens protein-1

References

  1. Sima AA (2004) Diabetes underlies common neurological disorders. Ann Neurol 56(4):459–461. doi:10.1002/ana.20249

    Article  PubMed  Google Scholar 

  2. Ristow M (2004) Neurodegenerative disorders associated with diabetes mellitus. J Mol Med 82(8):510–529. doi:10.1007/s00109-004-0552-1

    Article  PubMed  Google Scholar 

  3. The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329 (14):977–986. doi:10.1056/NEJM199309303291401

    Google Scholar 

  4. UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood–glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352 (9131):837–853. doi:S0140673698070196

    Google Scholar 

  5. Cerbone AM, Macarone-Palmieri N, Saldalamacchia G, Coppola A, Di Minno G, Rivellese AA (2009) Diabetes, vascular complications and antiplatelet therapy: open problems. Acta Diabetol 46(4):253–261. doi:10.1007/s00592-008-0079-y

    Article  PubMed  CAS  Google Scholar 

  6. Lorenzi M, Healy DP, Hawkins R, Printz JM, Printz MP (1986) Studies on the permeability of the blood–brain barrier in experimental diabetes. Diabetologia 29(1):58–62

    Article  PubMed  CAS  Google Scholar 

  7. Stauber WT, Ong SH, McCuskey RS (1981) Selective extravascular escape of albumin into the cerebral cortex of the diabetic rat. Diabetes 30(6):500–503

    Article  PubMed  CAS  Google Scholar 

  8. Huber JD, VanGilder RL, Houser KA (2006) Streptozotocin-induced diabetes progressively increases blood–brain barrier permeability in specific brain regions in rats. Am J Physiol Heart Circ Physiol 291(6):H2660–H2668. doi:10.1152/ajpheart.00489.2006

    Article  PubMed  CAS  Google Scholar 

  9. Hawkins BT, Lundeen TF, Norwood KM, Brooks HL, Egleton RD (2007) Increased blood–brain barrier permeability and altered tight junctions in experimental diabetes in the rat: contribution of hyperglycaemia and matrix metalloproteinases. Diabetologia 50(1):202–211. doi:10.1007/s00125-006-0485-z

    Article  PubMed  CAS  Google Scholar 

  10. Mooradian AD, Haas MJ, Batejko O, Hovsepyan M, Feman SS (2005) Statins ameliorate endothelial barrier permeability changes in the cerebral tissue of streptozotocin-induced diabetic rats. Diabetes 54(10):2977–2982

    Article  PubMed  CAS  Google Scholar 

  11. Shivers RR (1979) The effect of hyperglycemia on brain capillary permeability in the lizard, Anolis carolinensis. A freeze-fracture analysis of blood–brain barrier pathology. Brain Res 170(3):509–522. doi:0006-8993(79)90968-5

    Google Scholar 

  12. Iwata A, Koike F, Arasaki K, Tamaki M (1999) Blood brain barrier destruction in hyperglycemic chorea in a patient with poorly controlled diabetes. J Neurol Sci 163(1):90–93. doi:S0022510X98003256

    Article  PubMed  CAS  Google Scholar 

  13. Starr JM, Wardlaw J, Ferguson K, MacLullich A, Deary IJ, Marshall I (2003) Increased blood–brain barrier permeability in type II diabetes demonstrated by gadolinium magnetic resonance imaging. J Neurol Neurosurg Psychiatry 74(1):70–76

    Article  PubMed  CAS  Google Scholar 

  14. Bazzoni G, Dejana E (2004) Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 84(3):869–901. doi:10.1152/physrev.00035.200384/3/869

    Article  PubMed  CAS  Google Scholar 

  15. Fischer S, Wobben M, Marti HH, Renz D, Schaper W (2002) Hypoxia-induced hyperpermeability in brain microvessel endothelial cells involves VEGF-mediated changes in the expression of zonula occludens-1. Microvasc Res 63(1):70–80. doi:10.1006/mvre.2001.2367

    Article  PubMed  CAS  Google Scholar 

  16. Bamforth SD, Kniesel U, Wolburg H, Engelhardt B, Risau W (1999) A dominant mutant of occludin disrupts tight junction structure and function. J Cell Sci 112(Pt 12):1879–1888

    PubMed  CAS  Google Scholar 

  17. Zlokovic BV (2008) The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57(2):178–201. doi:10.1016/j.neuron.2008.01.003

    Article  PubMed  CAS  Google Scholar 

  18. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16(9):4604–4613

    PubMed  CAS  Google Scholar 

  19. Schoch HJ, Fischer S, Marti HH (2002) Hypoxia-induced vascular endothelial growth factor expression causes vascular leakage in the brain. Brain 125(Pt 11):2549–2557

    Article  PubMed  Google Scholar 

  20. Yeh WL, Lu DY, Lin CJ, Liou HC, Fu WM (2007) Inhibition of hypoxia-induced increase of blood–brain barrier permeability by YC-1 through the antagonism of HIF-1alpha accumulation and VEGF expression. Mol Pharmacol 72(2):440–449. doi:10.1124/mol.107.036418

    Article  PubMed  CAS  Google Scholar 

  21. Bauer AT, Burgers HF, Rabie T, Marti HH (2010) Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement. J Cereb Blood Flow Metab 30(4):837–848. doi:10.1038/jcbfm.2009.248

    Article  PubMed  CAS  Google Scholar 

  22. Marfella R, D’Amico M, Di Filippo C, Piegari E, Nappo F, Esposito K, Berrino L, Rossi F, Giugliano D (2002) Myocardial infarction in diabetic rats: role of hyperglycaemia on infarct size and early expression of hypoxia-inducible factor 1. Diabetologia 45(8):1172–1181. doi:10.1007/s00125-002-0882-x

    Article  PubMed  CAS  Google Scholar 

  23. Isoe T, Makino Y, Mizumoto K, Sakagami H, Fujita Y, Honjo J, Takiyama Y, Itoh H, Haneda M (2010) High glucose activates HIF-1-mediated signal transduction in glomerular mesangial cells through a carbohydrate response element binding protein. Kidney Int 78(1):48–59. doi:10.1038/ki.2010.99

    Article  PubMed  CAS  Google Scholar 

  24. Omidi Y, Campbell L, Barar J, Connell D, Akhtar S, Gumbleton M (2003) Evaluation of the immortalised mouse brain capillary endothelial cell line, b.End3, as an in vitro blood–brain barrier model for drug uptake and transport studies. Brain Res 990(1–2):95–112. doi:S0006899303034437

    Article  PubMed  CAS  Google Scholar 

  25. Li G, Simon MJ, Cancel LM, Shi ZD, Ji X, Tarbell JM, Morrison B 3rd, Fu BM (2010) Permeability of endothelial and astrocyte cocultures: in vitro blood–brain barrier models for drug delivery studies. Ann Biomed Eng 38(8):2499–2511. doi:10.1007/s10439-010-0023-5

    Google Scholar 

  26. Brown RC, Morris AP, O’Neil RG (2007) Tight junction protein expression and barrier properties of immortalized mouse brain microvessel endothelial cells. Brain Res 1130(1):17–30. doi:10.1016/j.brainres.2006.10.083

    Article  PubMed  CAS  Google Scholar 

  27. Scott GS, Bowman SR, Smith T, Flower RJ, Bolton C (2007) Glutamate-stimulated peroxynitrite production in a brain-derived endothelial cell line is dependent on N-methyl-d-aspartate (NMDA) receptor activation. Biochem Pharmacol 73(2):228–236. doi:10.1016/j.bcp.2006.09.021

    Article  PubMed  CAS  Google Scholar 

  28. Chen F, Ohashi N, Li W, Eckman C, Nguyen JH (2009) Disruptions of occludin and claudin-5 in brain endothelial cells in vitro and in brains of mice with acute liver failure. Hepatology 50(6):1914–1923. doi:10.1002/hep.23203

    Article  PubMed  CAS  Google Scholar 

  29. Jacob A, Hack B, Chiang E, Garcia JG, Quigg RJ, Alexander JJ (2010) C5a alters blood–brain barrier integrity in experimental lupus. FASEB J 24(6):1682–1688. doi:10.1096/fj.09-138834

    Google Scholar 

  30. Betzen C, White R, Zehendner CM, Pietrowski E, Bender B, Luhmann HJ, Kuhlmann CR (2009) Oxidative stress upregulates the NMDA receptor on cerebrovascular endothelium. Free Radic Biol Med 47(8):1212–1220. doi:10.1016/j.freeradbiomed.2009.07.034

    Article  PubMed  CAS  Google Scholar 

  31. Bernas MJ, Cardoso FL, Daley SK, Weinand ME, Campos AR, Ferreira AJ, Hoying JB, Witte MH, Brites D, Persidsky Y, Ramirez SH, Brito MA (2010) Establishment of primary cultures of human brain microvascular endothelial cells to provide an in vitro cellular model of the blood–brain barrier. Nat Protoc 5(7):1265–1272. doi:10.1038/nprot.2010.76

    Google Scholar 

  32. Tan W, Rouen S, Barkus KM, Dremina YS, Hui D, Christianson JA, Wright DE, Yoon SO, Dobrowsky RT (2003) Nerve growth factor blocks the glucose-induced down-regulation of caveolin-1 expression in Schwann cells via p75 neurotrophin receptor signaling. J Biol Chem 278(25):23151–23162. doi:10.1074/jbc.M2129

    Article  PubMed  CAS  Google Scholar 

  33. Mabjeesh NJ, Escuin D, LaVallee TM, Pribluda VS, Swartz GM, Johnson MS, Willard MT, Zhong H, Simons JW, Giannakakou P (2003) 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell 3(4):363–375

    Article  PubMed  CAS  Google Scholar 

  34. Sun HL, Liu YN, Huang YT, Pan SL, Huang DY, Guh JH, Lee FY, Kuo SC, Teng CM (2007) YC-1 inhibits HIF-1 expression in prostate cancer cells: contribution of Akt/NF-kappaB signaling to HIF-1alpha accumulation during hypoxia. Oncogene 26(27):3941–3951. doi:10.1038/sj.onc.1210169

    Article  PubMed  CAS  Google Scholar 

  35. Ambati J, Canakis CS, Miller JW, Gragoudas ES, Edwards A, Weissgold DJ, Kim I, Delori FC, Adamis AP (2000) Diffusion of high molecular weight compounds through sclera. Invest Ophthalmol Vis Sci 41(5):1181–1185

    PubMed  CAS  Google Scholar 

  36. Rapisarda A, Uranchimeg B, Scudiero DA, Selby M, Sausville EA, Shoemaker RH, Melillo G (2002) Identification of small molecule inhibitors of hypoxia-inducible factor 1 transcriptional activation pathway. Cancer Res 62(15):4316–4324

    PubMed  CAS  Google Scholar 

  37. Mikami Y, Hisatsune A, Tashiro T, Isohama Y, Katsuki H (2009) Hypoxia enhances MUC1 expression in a lung adenocarcinoma cell line. Biochem Biophys Res Commun 379(4):1060–1065. doi:10.1016/j.bbrc.2009.01.002

    Article  PubMed  CAS  Google Scholar 

  38. Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92(12):5510–5514

    Article  PubMed  CAS  Google Scholar 

  39. Salceda S, Caro J (1997) Hypoxia-inducible factor 1alpha protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 272(36):22642–22647

    Article  PubMed  CAS  Google Scholar 

  40. Li Z, Wang D, Messing EM, Wu G (2005) VHL protein-interacting deubiquitinating enzyme 2 deubiquitinates and stabilizes HIF-1alpha. EMBO Rep 6(4):373–378. doi:10.1038/sj.embor.7400377

    Article  PubMed  CAS  Google Scholar 

  41. Ke Q, Costa M (2006) Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 70(5):1469–1480. doi:10.1124/mol.106.027029

    Article  PubMed  CAS  Google Scholar 

  42. Chavez JC, Almhanna K, Berti-Mattera LN (2005) Transient expression of hypoxia-inducible factor-1 alpha and target genes in peripheral nerves from diabetic rats. Neurosci Lett 374(3):179–182. doi:10.1016/j.neulet.2004.10.050

    Article  PubMed  CAS  Google Scholar 

  43. Makino H, Miyamoto Y, Sawai K, Mori K, Mukoyama M, Nakao K, Yoshimasa Y, Suga S (2006) Altered gene expression related to glomerulogenesis and podocyte structure in early diabetic nephropathy of db/db mice and its restoration by pioglitazone. Diabetes 55(10):2747–2756. doi:10.2337/db05-1683

    Article  PubMed  CAS  Google Scholar 

  44. Lim JI, Spee C, Hinton DR (2010) A comparison of hypoxia-inducible factor-alpha in surgically excised neovascular membranes of patients with diabetes compared with idiopathic epiretinal membranes in nondiabetic patients. Retina 30(9):1472–1478. doi:10.1097/IAE.0b013e3181d6df09

    Google Scholar 

  45. Seftel AD, Maclennan GT, Chen ZJ, Liu S, Ferguson K, Deoreo G, Levine F, Hampel N, Ho-Chang C (1999) Loss of TGFbeta, apoptosis, and Bcl-2 in erectile dysfunction and upregulation of p53 and HIF-1alpha in diabetes-associated erectile dysfunction. Mol Urol 3(2):103–107

    PubMed  CAS  Google Scholar 

  46. Semenza GL (2001) HIF-1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 107(1):1–3

    Article  PubMed  CAS  Google Scholar 

  47. Treins C, Giorgetti-Peraldi S, Murdaca J, Van Obberghen E (2001) Regulation of vascular endothelial growth factor expression by advanced glycation end products. J Biol Chem 276(47):43836–43841. doi:10.1074/jbc.M106534200

    Article  PubMed  CAS  Google Scholar 

  48. Klimova T, Chandel NS (2008) Mitochondrial complex III regulates hypoxic activation of HIF. Cell Death Differ 15(4):660–666. doi:10.1038/sj.cdd.4402307

    Article  PubMed  CAS  Google Scholar 

  49. Huang LE, Arany Z, Livingston DM, Bunn HF (1996) Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem 271(50):32253–32259

    Article  PubMed  CAS  Google Scholar 

  50. Nishikawa T, Araki E (2007) Impact of mitochondrial ROS production in the pathogenesis of diabetes mellitus and its complications. Antioxid Redox Signal 9(3):343–353. doi:10.1089/ars.2007.9.ft-19

    Article  PubMed  CAS  Google Scholar 

  51. Yamagishi S, Inagaki Y, Amano S, Okamoto T, Takeuchi M, Makita Z (2002) Pigment epithelium-derived factor protects cultured retinal pericytes from advanced glycation end product-induced injury through its antioxidative properties. Biochem Biophys Res Commun 296(4):877–882

    Article  PubMed  CAS  Google Scholar 

  52. Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, Aoki T, Etoh T, Hashimoto T, Naruse M, Sano H, Utsumi H, Nawata H (2000) High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C–dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49(11):1939–1945

    Article  PubMed  CAS  Google Scholar 

  53. Aiello LP, Pierce EA, Foley ED, Takagi H, Chen H, Riddle L, Ferrara N, King GL, Smith LE (1995) Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Natl Acad Sci USA 92(23):10457–10461

    Article  PubMed  CAS  Google Scholar 

  54. Adamis AP, Shima DT, Tolentino MJ, Gragoudas ES, Ferrara N, Folkman J, D’Amore PA, Miller JW (1996) Inhibition of vascular endothelial growth factor prevents retinal ischemia-associated iris neovascularization in a nonhuman primate. Arch Ophthalmol 114(1):66–71

    Article  PubMed  CAS  Google Scholar 

  55. Poulaki V, Qin W, Joussen AM, Hurlbut P, Wiegand SJ, Rudge J, Yancopoulos GD, Adamis AP (2002) Acute intensive insulin therapy exacerbates diabetic blood-retinal barrier breakdown via hypoxia-inducible factor-1alpha and VEGF. J Clin Invest 109(6):805–815. doi:10.1172/JCI13776

    PubMed  CAS  Google Scholar 

  56. O’Hagan KA, Cocchiglia S, Zhdanov AV, Tambuwala MM, Cummins EP, Monfared M, Agbor TA, Garvey JF, Papkovsky DB, Taylor CT, Allan BB (2009) PGC-1alpha is coupled to HIF-1alpha-dependent gene expression by increasing mitochondrial oxygen consumption in skeletal muscle cells. Proc Natl Acad Sci U S A 106(7):2188–2193. doi:10.1073/pnas.0808801106

    Article  PubMed  Google Scholar 

  57. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37(1):13–25. doi:10.1016/j.nbd.2009.07.030

    Google Scholar 

  58. Hawkins BT, Davis TP (2005) The blood–brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57(2):173–185. doi:10.1124/pr.57.2.4

    Article  PubMed  CAS  Google Scholar 

  59. Antonetti DA, Barber AJ, Hollinger LA, Wolpert EB, Gardner TW (1999) Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1 A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J Biol Chem 274(33):23463–23467

    Article  PubMed  CAS  Google Scholar 

  60. Carpenter TC, Schomberg S, Stenmark KR (2005) Endothelin-mediated increases in lung VEGF content promote vascular leak in young rats exposed to viral infection and hypoxia. Am J Physiol Lung Cell Mol Physiol 289(6):L1075–L1082. doi:10.1152/ajplung.00251.2005

    Article  PubMed  CAS  Google Scholar 

  61. Fischer S, Clauss M, Wiesnet M, Renz D, Schaper W, Karliczek GF (1999) Hypoxia induces permeability in brain microvessel endothelial cells via VEGF and NO. Am J Physiol 276(4 Pt 1):C812–C820

    PubMed  CAS  Google Scholar 

  62. Zhang Z, Chopp M (2002) Vascular endothelial growth factor and angiopoietins in focal cerebral ischemia. Trends Cardiovasc Med 12(2):62–66

    Article  PubMed  CAS  Google Scholar 

  63. Gitay-Goren H, Cohen T, Tessler S, Soker S, Gengrinovitch S, Rockwell P, Klagsbrun M, Levi BZ, Neufeld G (1996) Selective binding of VEGF121 to one of the three vascular endothelial growth factor receptors of vascular endothelial cells. J Biol Chem 271(10):5519–5523

    Article  PubMed  CAS  Google Scholar 

  64. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362(6423):841–844. doi:10.1038/362841a0

    Article  PubMed  CAS  Google Scholar 

  65. Argaw AT, Gurfein BT, Zhang Y, Zameer A, John GR (2009) VEGF-mediated disruption of endothelial CLN-5 promotes blood–brain barrier breakdown. Proc Natl Acad Sci USA 106(6):1977–1982. doi:10.1073/pnas.0808698106

    Article  PubMed  CAS  Google Scholar 

  66. Stamatovic SM, Keep RF, Andjelkovic AV (2008) Brain endothelial cell-cell junctions: how to “open” the blood brain barrier. Curr Neuropharmacol 6(3):179–192. doi:10.2174/157015908785777210

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Giovanni Melillo (National Cancer Institute-Frederick, Frederick, MD) for kindly providing us with the PGL2TkHRE plasmid and Dr. Rick Dobrowsky for his valuable suggestions and comments. We are indebted to Drs. Eli Michaelis and Mary Lou Michaelis for reading this manuscript and providing very useful suggestions. This research was supported in part by a KUCR startup fund and a KU NFGR award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglian Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, J., Zhang, Z. & Shi, H. HIF-1 is involved in high glucose-induced paracellular permeability of brain endothelial cells. Cell. Mol. Life Sci. 69, 115–128 (2012). https://doi.org/10.1007/s00018-011-0731-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0731-5

Keywords

Navigation