Skip to main content

Advertisement

Log in

Paneth cell α-defensins in enteric innate immunity

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Paneth cells at the base of small intestinal crypts of Lieberkühn secrete high levels of α-defensins in response to cholinergic and microbial stimuli. Paneth cell α-defensins are broad spectrum microbicides that function in the extracellular environment of the intestinal lumen, and they are responsible for the majority of secreted bactericidal peptide activity. Paneth cell α-defensins confer immunity to oral infection by Salmonella enterica serovar Typhimurium, and they are major determinants of the composition of the small intestinal microbiome. In addition to host defense molecules such as α-defensins, lysozyme, and Pla2g2a, Paneth cells also produce and release proinflammatory mediators as components of secretory granules. Disruption of Paneth cell homeostasis, with subsequent induction of endoplasmic reticulum stress, autophagy, or apoptosis, contributes to inflammation in diverse genetic and experimental mouse models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AMP:

Antimicrobial peptide

CRIP:

Cysteine-rich intestinal polypeptide

Crp:

Cryptdin, a term applied only to mouse Paneth cell α-defensins

(6C/A)-Crp or (6C/A)-RMAD:

Peptides in which all Cys residues of the parent peptide are substituted with Ala to eliminate the disulfide array

CRS1C, CRS4C:

Two cysteine-rich sequence, α-defensin-related peptide families of mice

DEFA5-transgenic (+/+):

Mice transgenic for the human Paneth cell α-defensin HD5

ER:

Endoplasmic reticulum

HD5 and HD6:

Human defensin 5 and 6, the two human Paneth cell α-defensins

HNP:

Human neutrophil defensin

IL-17:

Interleukin-17

LL-37:

The human cathelicidin peptide

MMP7:

Matrix metalloproteinase-7

NK:

Natural killer cells

NMR:

Nuclear magnetic resonance

NP-:

Rabbit neutrophil α-defensin

proHD5:

The HD5 precursor

RegIII-γ:

Pancreatitis-associated protein 3 or regenerating islet-derived protein III-gamma

(R/K)-Crp or (R/K)-RMAD:

Peptides in which all Arg residue positions of the parent molecule are substituted with Lys

RMAD:

Rhesus myeloid α-defensin

RT-PCR:

Reverse transcriptase polymerase chain reaction

TNF-α:

Tumor necrosis factor-α

References

  1. Porter EM, Bevins CL, Ghosh D, Ganz T (2002) The multifaceted Paneth cell. Cell Mol Life Sci 59:156–170

    Article  PubMed  CAS  Google Scholar 

  2. Cheng H, Merzel J, Leblond CP (1969) Renewal of Paneth cells in the small intestine of the mouse. Am J Anat 126:507–525

    Article  PubMed  CAS  Google Scholar 

  3. Cheng H (1974) Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. IV. Paneth cells. Am J Anat 141:521–535

    Article  PubMed  CAS  Google Scholar 

  4. Cheng H, Leblond CP (1974) Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. Am J Anat 141:537–561

    Article  PubMed  CAS  Google Scholar 

  5. Cheng H, Leblond CP (1974) Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. I. Columnar cell. Am J Anat 141:461–479

    Article  PubMed  CAS  Google Scholar 

  6. Cheng H, Leblond CP (1974) Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. III. Entero-endocrine cells. Am J Anat 141:503–519

    Article  PubMed  CAS  Google Scholar 

  7. Clevers H (2009) Searching for adult stem cells in the intestine. EMBO Mol Med 1:255–259

    Article  PubMed  CAS  Google Scholar 

  8. Fre S, Huyghe M, Mourikis P, Robine S, Louvard D, Artavanis-Tsakonas S (2005) Notch signals control the fate of immature progenitor cells in the intestine. Nature 435:964–968

    Article  PubMed  CAS  Google Scholar 

  9. Okamoto R, Tsuchiya K, Nemoto Y, Akiyama J, Nakamura T, Kanai T, Watanabe M (2009) Requirement of Notch activation during regeneration of the intestinal epithelia. Am J Physiol Gastrointest Liver Physiol 296:G23–G35

    Article  PubMed  CAS  Google Scholar 

  10. van Es JH, Jay P, Gregorieff A, van Gijn ME, Jonkheer S, Hatzis P, Thiele A, van den Born M, Begthel H, Brabletz T, Taketo MM, Clevers H (2005) Wnt signalling induces maturation of Paneth cells in intestinal crypts. Nat Cell Biol 7:381–386

    Article  PubMed  CAS  Google Scholar 

  11. Bjerknes M, Cheng H (1981) The stem-cell zone of the small intestinal epithelium. IV. Effects of resecting 30% of the small intestine. Am J Anat 160:93–103

    Article  PubMed  CAS  Google Scholar 

  12. van der Flier LG, Clevers H (2009) Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 71:241–260

    Article  PubMed  CAS  Google Scholar 

  13. Bastide P, Darido C, Pannequin J, Kist R, Robine S, Marty-Double C, Bibeau F, Scherer G, Joubert D, Hollande F, Blache P, Jay P (2007) Sox9 regulates cell proliferation and is required for Paneth cell differentiation in the intestinal epithelium. J Cell Biol 178:635–648

    Article  PubMed  CAS  Google Scholar 

  14. Mori-Akiyama Y, van den Born M, van Es JH, Hamilton SR, Adams HP, Zhang J, Clevers H, de Crombrugghe B (2007) SOX9 is required for the differentiation of Paneth cells in the intestinal epithelium. Gastroenterology 133:539–546

    Article  PubMed  CAS  Google Scholar 

  15. Stappenbeck TS (2009) Paneth cell development, differentiation, and function: new molecular cues. Gastroenterology 137:30–33

    Article  PubMed  CAS  Google Scholar 

  16. Takahashi N, Vanlaere I, de Rycke R, Cauwels A, Joosten LA, Lubberts E, van den Berg WB, Libert C (2008) IL-17 produced by Paneth cells drives TNF-induced shock. J Exp Med 205:1755–1761

    Article  PubMed  CAS  Google Scholar 

  17. Ouellette AJ (2010) Paneth cells and innate mucosal immunity. Curr Opin Gastroenterol 26:547–553

    Article  PubMed  Google Scholar 

  18. McGuckin MA, Eri RD, Das I, Lourie R, Florin TH (2010) ER stress and the unfolded protein response in intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 298:G820–G832

    Article  PubMed  CAS  Google Scholar 

  19. Cadwell K, Liu JY, Brown SL, Miyoshi H, Loh J, Lennerz JK, Kishi C, Kc W, Carrero JA, Hunt S, Stone CD, Brunt EM, Xavier RJ, Sleckman BP, Li E, Mizushima N, Stappenbeck TS, HWt Virgin (2008) A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456:259–263

    Article  PubMed  CAS  Google Scholar 

  20. Kaser A, Lee AH, Franke A, Glickman JN, Zeissig S, Tilg H, Nieuwenhuis EE, Higgins DE, Schreiber S, Glimcher LH, Blumberg RS (2008) XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134:743–756

    Article  PubMed  CAS  Google Scholar 

  21. Zhao F, Edwards R, Dizon D, Afrasiabi K, Mastroianni JR, Geyfman M, Ouellette AJ, Andersen B, Lipkin SM (2010) Disruption of Paneth and goblet cell homeostasis and increased endoplasmic reticulum stress in Agr2-/- mice. Dev Biol 338:270–279

    Article  PubMed  CAS  Google Scholar 

  22. Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M, Barker N, Shroyer NF, van de Wetering M, Clevers H (2010) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469:415–418

    Article  PubMed  CAS  Google Scholar 

  23. Tomasinsig L, Zanetti M (2005) The cathelicidins—structure, function and evolution. Curr Protein Pept Sci 6:23–34

    Article  PubMed  CAS  Google Scholar 

  24. Lehrer RI, Ganz T (2002) Cathelicidins: a family of endogenous antimicrobial peptides. Curr Opin Hematol 9:18–22

    Article  PubMed  Google Scholar 

  25. Sorensen OE, Borregaard N (2005) Cathelicidins—nature’s attempt at combinatorial chemistry. Comb Chem High Throughput Screen 8:273–280

    Article  PubMed  CAS  Google Scholar 

  26. Lehrer RI, Selsted ME, Szklarek D, Fleischmann J (1983) Antibacterial activity of microbicidal cationic proteins 1 and 2, natural peptide antibiotics of rabbit lung macrophages. Infect Immun 42:10–14

    PubMed  CAS  Google Scholar 

  27. Selsted ME, Brown DM, DeLange RJ, Lehrer RI (1983) Primary structures of MCP-1 and MCP-2, natural peptide antibiotics of rabbit lung macrophages. J Biol Chem 258:14485–14489

    PubMed  CAS  Google Scholar 

  28. Selsted ME, Ouellette AJ (2005) Mammalian defensins in the antimicrobial immune response. Nat Immunol 6:551–557

    Article  PubMed  CAS  Google Scholar 

  29. Ganz T (2004) Defensins: antimicrobial peptides of vertebrates. C R Biol 327:539–549

    Article  PubMed  CAS  Google Scholar 

  30. Ganz T, Selsted ME, Szklarek D, Harwig SS, Daher K, Bainton DF, Lehrer RI (1985) Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest 76:1427–1435

    Article  PubMed  CAS  Google Scholar 

  31. Ayabe T, Satchell DP, Wilson CL, Parks WC, Selsted ME, Ouellette AJ (2000) Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria. Nat Immunol 1:113–118

    Article  PubMed  CAS  Google Scholar 

  32. Ghosh D, Porter E, Shen B, Lee SK, Wilk D, Drazba J, Yadav SP, Crabb JW, Ganz T, Bevins CL (2002) Paneth cell trypsin is the processing enzyme for human defensin-5. Nat Immunol 3:583–590

    Article  PubMed  CAS  Google Scholar 

  33. Scheetz T, Bartlett JA, Walters JD, Schutte BC, Casavant TL, McCray PB Jr (2002) Genomics-based approaches to gene discovery in innate immunity. Immunol Rev 190:137–145

    Article  PubMed  CAS  Google Scholar 

  34. Garcia AE, Osapay G, Tran PA, Yuan J, Selsted ME (2008) Isolation, synthesis, and antimicrobial activities of naturally occurring theta-defensin isoforms from baboon leukocytes. Infect Immun 76:5883–5891

    Article  PubMed  CAS  Google Scholar 

  35. Tran D, Tran PA, Tang YQ, Yuan J, Cole T, Selsted ME (2002) Homodimeric theta-defensins from rhesus macaque leukocytes: isolation, synthesis, antimicrobial activities, and bacterial binding properties of the cyclic peptides. J Biol Chem 277:3079–3084

    Article  PubMed  CAS  Google Scholar 

  36. Tang YQ, Yuan J, Osapay G, Osapay K, Tran D, Miller CJ, Ouellette AJ, Selsted ME (1999) A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins. Science 286:498–502

    Article  PubMed  CAS  Google Scholar 

  37. Leonova L, Kokryakov VN, Aleshina G, Hong T, Nguyen T, Zhao C, Waring AJ, Lehrer RI (2001) Circular minidefensins and posttranslational generation of molecular diversity. J Leukoc Biol 70:461–464

    PubMed  CAS  Google Scholar 

  38. Funderburg N, Lederman MM, Feng Z, Drage MG, Jadlowsky J, Harding CV, Weinberg A, Sieg SF (2007) Human-defensin-3 activates professional antigen-presenting cells via Toll-like receptors 1 and 2. Proc Natl Acad Sci USA 104:18631–18635

    Article  PubMed  CAS  Google Scholar 

  39. Biragyn A, Coscia M, Nagashima K, Sanford M, Young HA, Olkhanud P (2008) Murine beta-defensin 2 promotes TLR-4/MyD88-mediated and NF-kappaB-dependent atypical death of APCs via activation of TNFR2. J Leukoc Biol 83:998–1008

    Article  PubMed  CAS  Google Scholar 

  40. Candille SI, Kaelin CB, Cattanach BM, Yu B, Thompson DA, Nix MA, Kerns JA, Schmutz SM, Millhauser GL, Barsh GS (2007) A beta-defensin mutation causes black coat color in domestic dogs. Science 318:1418–1423

    Article  PubMed  CAS  Google Scholar 

  41. Schmutz SM, Berryere TG (2007) Genes affecting coat colour and pattern in domestic dogs: a review. Anim Genet 38:539–549

    Article  PubMed  CAS  Google Scholar 

  42. Tollner TL, Yudin AI, Tarantal AF, Treece CA, Overstreet JW, Cherr GN (2008) Beta-defensin 126 on the surface of macaque sperm mediates attachment of sperm to oviductal epithelia. Biol Reprod 78:400–412

    Article  PubMed  CAS  Google Scholar 

  43. Tollner TL, Yudin AI, Treece CA, Overstreet JW, Cherr GN (2008) Macaque sperm coating protein DEFB126 facilitates sperm penetration of cervical mucus. Hum Reprod 23:2523–2534

    Article  PubMed  CAS  Google Scholar 

  44. Taylor K, Clarke DJ, McCullough B, Chin W, Seo E, Yang D, Oppenheim J, Uhrin D, Govan JR, Campopiano DJ, MacMillan D, Barran P, Dorin JR (2008) Analysis and separation of residues important for the chemoattractant and antimicrobial activities of beta-defensin 3. J Biol Chem 283:6631–6639

    Article  PubMed  CAS  Google Scholar 

  45. Yang D, Biragyn A, Hoover DM, Lubkowski J, Oppenheim JJ (2004) Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu Rev Immunol 22:181–215

    Article  PubMed  CAS  Google Scholar 

  46. Cunliffe RN, Rose FR, Keyte J, Abberley L, Chan WC, Mahida YR (2001) Human defensin 5 is stored in precursor form in normal Paneth cells and is expressed by some villous epithelial cells and by metaplastic Paneth cells in the colon in inflammatory bowel disease. Gut 48:176–185

    Article  PubMed  CAS  Google Scholar 

  47. Salzman NH, Ghosh D, Huttner KM, Paterson Y, Bevins CL (2003) Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422:522–526

    Article  PubMed  CAS  Google Scholar 

  48. Wu Z, Ericksen B, Tucker K, Lubkowski J, Lu W (2004) Synthesis and characterization of human alpha-defensins 4–6. J Pept Res 64:118–125

    Article  PubMed  CAS  Google Scholar 

  49. White SH, Wimley WC, Selsted ME (1995) Structure, function, and membrane integration of defensins. Curr Opin Struct Biol 5:521–527

    Article  PubMed  CAS  Google Scholar 

  50. Selsted ME, Harwig SS (1989) Determination of the disulfide array in the human defensin HNP-2. A covalently cyclized peptide. J Biol Chem 264:4003–4007

    PubMed  CAS  Google Scholar 

  51. Selsted ME, Tang YQ, Morris WL, McGuire PA, Novotny MJ, Smith W, Henschen AH, Cullor JS (1993) Purification, primary structures, and antibacterial activities of beta-defensins, a new family of antimicrobial peptides from bovine neutrophils. J Biol Chem 268:6641–6648

    PubMed  CAS  Google Scholar 

  52. Zimmermann GR, Legault P, Selsted ME, Pardi A (1995) Solution structure of bovine neutrophil beta-defensin-12: the peptide fold of the beta-defensins is identical to that of the classical defensins. Biochemistry 34:13663–13671

    Article  PubMed  CAS  Google Scholar 

  53. Skalicky JJ, Selsted ME, Pardi A (1994) Structure and dynamics of the neutrophil defensins NP-2, NP-5, and HNP-1: NMR studies of amide hydrogen exchange kinetics. Proteins 20:52–67

    Article  PubMed  CAS  Google Scholar 

  54. Pardi A, Zhang XL, Selsted ME, Skalicky JJ, Yip PF (1992) NMR studies of defensin antimicrobial peptides. 2. Three-dimensional structures of rabbit NP-2 and human HNP-1. Biochemistry 31:11357–11364

    Article  PubMed  CAS  Google Scholar 

  55. Hill CP, Yee J, Selsted ME, Eisenberg D (1991) Crystal structure of defensin HNP-3, an amphiphilic dimer: mechanisms of membrane permeabilization. Science 251:1481–1485

    Article  PubMed  CAS  Google Scholar 

  56. Szyk A, Wu Z, Tucker K, Yang D, Lu W, Lubkowski J (2006) Crystal structures of human alpha-defensins HNP4, HD5, and HD6. Protein Sci 15:2749–2760

    Article  PubMed  CAS  Google Scholar 

  57. Pazgier M, Li X, Lu W, Lubkowski J (2007) Human defensins: synthesis and structural properties. Curr Pharm Des 13:3096–3118

    Article  PubMed  CAS  Google Scholar 

  58. Tanabe H, Ouellette AJ, Cocco MJ, Robinson WE Jr (2004) Differential Effects on human immunodeficiency virus type 1 replication by alpha-defensins with comparable bactericidal activities. J Virol 78:11622–11631

    Article  PubMed  CAS  Google Scholar 

  59. Jing W, Hunter HN, Tanabe H, Ouellette AJ, Vogel HJ (2004) Solution structure of cryptdin-4, a mouse Paneth cell alpha-defensin. Biochemistry 43:15759–15766

    Article  PubMed  CAS  Google Scholar 

  60. Rosengren KJ, Daly NL, Fornander LM, Jonsson LM, Shirafuji Y, Qu X, Vogel HJ, Ouellette AJ, Craik DJ (2006) Structural and functional characterization of the conserved salt bridge in mammalian Paneth cell alpha-defensins: solution structures of mouse cryptdin-4 and (E15D)-cryptdin-4. J Biol Chem 281:28068–28078

    Article  PubMed  CAS  Google Scholar 

  61. McManus AM, Dawson NF, Wade JD, Carrington LE, Winzor DJ, Craik DJ (2000) Three-dimensional structure of RK-1: a novel alpha-defensin peptide. Biochemistry 39:15757–15764

    Article  PubMed  CAS  Google Scholar 

  62. Kamdar K, Maemoto A, Qu X, Young SK, Ouellette AJ (2008) In vitro activation of the rhesus macaque myeloid alpha-defensin precursor proRMAD-4 by neutrophil serine proteinases. J Biol Chem 283:32361–32368

    Article  PubMed  CAS  Google Scholar 

  63. Maemoto A, Qu X, Rosengren KJ, Tanabe H, Henschen-Edman A, Craik DJ, Ouellette AJ (2004) Functional analysis of the alpha-defensin disulfide array in mouse cryptdin-4. J Biol Chem 279:44188–44196

    Article  PubMed  CAS  Google Scholar 

  64. Hadjicharalambous C, Sheynis T, Jelinek R, Shanahan MT, Ouellette AJ, Gizeli E (2008) Mechanisms of alpha-defensin bactericidal action: comparative membrane disruption by cryptdin-4 and its disulfide-null analogue. Biochemistry 47:12626–12634

    Article  PubMed  CAS  Google Scholar 

  65. Zou G, de Leeuw E, Li C, Pazgier M, Li C, Zeng P, Lu WY, Lubkowski J, Lu W (2007) Toward understanding the cationicity of defensins: Arg and Lys versus their noncoded analogs. J Biol Chem 282:19653–19665

    Article  PubMed  CAS  Google Scholar 

  66. Wu Z, Hoover DM, Yang D, Boulegue C, Santamaria F, Oppenheim JJ, Lubkowski J, Lu W (2003) Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of human beta-defensin 3. Proc Natl Acad Sci USA 100:8880–8885

    Article  PubMed  CAS  Google Scholar 

  67. Rajabi M, de Leeuw E, Pazgier M, Li J, Lubkowski J, Lu W (2008) The conserved salt bridge in human alpha-defensin 5 is required for its precursor processing and proteolytic stability. J Biol Chem 283:21509–21518

    Article  PubMed  CAS  Google Scholar 

  68. Llenado RA, Weeks CS, Cocco MJ, Ouellette AJ (2009) Electropositive charge in alpha-defensin bactericidal activity: functional effects of Lys-for-Arg substitutions vary with the peptide primary structure. Infect Immun 77:5035–5043

    Article  PubMed  CAS  Google Scholar 

  69. Mitchell DJ, Kim DT, Steinman L, Fathman CG, Rothbard JB (2000) Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept Res 56:318–325

    Article  PubMed  CAS  Google Scholar 

  70. Lehrer RI, Ganz T (2002) Defensins of vertebrate animals. Curr Opin Immunol 14:96–102

    Article  PubMed  CAS  Google Scholar 

  71. Schneider T, Kruse T, Wimmer R, Wiedemann I, Sass V, Pag U, Jansen A, Nielsen AK, Mygind PH, Raventos DS, Neve S, Ravn B, Bonvin AM, De Maria L, Andersen AS, Gammelgaard LK, Sahl HG, Kristensen HH (2010) Plectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid II. Science 328:1168–1172

    Article  PubMed  CAS  Google Scholar 

  72. Schmitt P, Wilmes M, Pugniere M, Aumelas A, Bachere E, Sahl HG, Schneider T, Destoumieux-Garzon D (2010) Insight into invertebrate defensin mechanism of action: oyster defensins inhibit peptidoglycan biosynthesis by binding to lipid II. J Biol Chem 285:29208–29216

    Article  PubMed  CAS  Google Scholar 

  73. Sass V, Schneider T, Wilmes M, Korner C, Tossi A, Novikova N, Shamova O, Sahl HG (2010) Human beta-defensin 3 inhibits cell wall biosynthesis in Staphylococci. Infect Immun 78:2793–2800

    Article  PubMed  CAS  Google Scholar 

  74. Lehrer RI, Barton A, Daher KA, Harwig SS, Ganz T, Selsted ME (1989) Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J Clin Invest 84:553–561

    Article  PubMed  CAS  Google Scholar 

  75. Lambert PA, Hammond SM (1973) Potassium fluxes, first indications of membrane damage in micro-organisms. Biochem Biophys Res Commun 54:796–799

    Article  PubMed  CAS  Google Scholar 

  76. Orlov DS, Nguyen T, Lehrer RI (2002) Potassium release, a useful tool for studying antimicrobial peptides. J Microbiol Methods 49:325–328

    Article  PubMed  CAS  Google Scholar 

  77. Tincu JA, Menzel LP, Azimov R, Sands J, Hong T, Waring AJ, Taylor SW, Lehrer RI (2003) Plicatamide, an antimicrobial octapeptide from Styela plicata hemocytes. J Biol Chem 278:13546–13553

    Article  PubMed  CAS  Google Scholar 

  78. Shanahan MT, Vidrich A, Shirafuji Y, Dubois CL, Henschen-Edman A, Hagen SJ, Cohn SM, Ouellette AJ (2010) Elevated expression of Paneth cell CRS4C in ileitis-prone SAMP1/YitFc mice: regional distribution, subcellular localization, and mechanism of action. J Biol Chem 285:7493–7504

    Article  PubMed  CAS  Google Scholar 

  79. Hristova K, Selsted ME, White SH (1996) Interactions of monomeric rabbit neutrophil defensins with bilayers: comparison with dimeric human defensin HNP-2. Biochemistry 35:11888–11894

    Article  PubMed  CAS  Google Scholar 

  80. Hristova K, Selsted ME, White SH (1996) Interactions of monomeric rabbit neutrophil defensins with bilayers: comparison with dimeric human defensin HNP-2. Biochemistry 35:11888–11894

    Article  PubMed  CAS  Google Scholar 

  81. Satchell DP, Sheynis T, Kolusheva S, Cummings J, Vanderlick TK, Jelinek R, Selsted ME, Ouellette AJ (2003) Quantitative interactions between cryptdin-4 amino terminal variants and membranes. Peptides 24:1795–1805

    Article  PubMed  CAS  Google Scholar 

  82. Satchell DP, Sheynis T, Shirafuji Y, Kolusheva S, Ouellette AJ, Jelinek R (2003) Interactions of mouse Paneth cell alpha-defensins and alpha-defensin precursors with membranes: prosegment inhibition of peptide association with biomimetic membranes. J Biol Chem 278:13838–13846

    Article  PubMed  CAS  Google Scholar 

  83. Hristova K, Selsted ME, White SH (1997) Critical role of lipid composition in membrane permeabilization by rabbit neutrophil defensins. J. Biol Chem 272:24224–24233

    Article  PubMed  CAS  Google Scholar 

  84. Zeya HI, Spitznagel JK (1966) Antimicrobial specificity of leukocyte lysosomal cationic proteins. Science 154:1049–1051

    Article  PubMed  CAS  Google Scholar 

  85. Zeya HI, Spitznagel JK (1966) Cationic proteins of polymorphonuclear leukocyte lysosomes. II. Composition, properties, and mechanism of antibacterial action. J Bacteriol 91:755–762

    PubMed  CAS  Google Scholar 

  86. Zeya HI, Spitznagel JK (1963) Antibacterial and enzymic basic proteins from leukocyte lysosomes: separation and identification. Science 142:1085–1087

    Article  PubMed  CAS  Google Scholar 

  87. Yount NY, Wang MS, Yuan J, Banaiee N, Ouellette AJ, Selsted ME (1995) Rat neutrophil defensins. Precursor structures and expression during neutrophilic myelopoiesis. J Immunol 155:4476–4484

    PubMed  CAS  Google Scholar 

  88. Ganz T, Sherman MP, Selsted ME, Lehrer RI (1985) Newborn rabbit alveolar macrophages are deficient in two microbicidal cationic peptides, MCP-1 and MCP-2. Am Rev Respir Dis 132:901–904

    PubMed  CAS  Google Scholar 

  89. Eisenhauer PB, Lehrer RI (1992) Mouse neutrophils lack defensins. Infect Immun 60:3446–3447

    PubMed  CAS  Google Scholar 

  90. Shanahan MT, Tanabe H, Ouellette AJ (2011) Strain-specific polymorphisms in Paneth cell alpha-defensins of C57BL/6 mice and evidence of vestigial myeloid alpha-defensin pseudogenes. Infect Immun 79:459–473

    Article  PubMed  Google Scholar 

  91. Mackewicz CE, Yuan J, Tran P, Diaz L, Mack E, Selsted ME, Levy JA (2003) Alpha-defensins can have anti-HIV activity but are not CD8 cell anti-HIV factors. AIDS 17:F23–F32

    Article  PubMed  CAS  Google Scholar 

  92. Chalifour A, Jeannin P, Gauchat JF, Blaecke A, Malissard M, N’Guyen T, Thieblemont N, Delneste Y (2004) Direct bacterial protein PAMPs recognition by human NK cells involves TLRs and triggers alpha-defensin production. Blood 104:1778–1783

    Article  PubMed  CAS  Google Scholar 

  93. Obata-Onai A, Hashimoto S, Onai N, Kurachi M, Nagai S, Shizuno K, Nagahata T, Matsushima K (2002) Comprehensive gene expression analysis of human NK cells and CD8(+) T lymphocytes. Int Immunol 14:1085–1098

    Article  PubMed  CAS  Google Scholar 

  94. Agerberth B, Charo J, Werr J, Olsson B, Idali F, Lindbom L, Kiessling R, Jornvall H, Wigzell H, Gudmundsson GH (2000) The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations. Blood 96:3086–3093

    PubMed  CAS  Google Scholar 

  95. Ouellette AJ, Satchell DP, Hsieh MM, Hagen SJ, Selsted ME (2000) Characterization of luminal Paneth alpha-defensins in mouse small intestine. J. Biol Chem 275:33969–33973

    Article  PubMed  CAS  Google Scholar 

  96. Ouellette AJ, Darmoul D, Tran D, Huttner KM, Yuan J, Selsted ME (1999) Peptide localization and gene structure of cryptdin 4, a differentially expressed mouse Paneth cell alpha-defensin. Infect Immun 67:6643–6651

    PubMed  CAS  Google Scholar 

  97. Selsted ME, Miller SI, Henschen AH, Ouellette AJ (1992) Enteric defensins: antibiotic peptide components of intestinal host defense. J Cell Biol 118:929–936

    Article  PubMed  CAS  Google Scholar 

  98. Porter EM, Liu L, Oren A, Anton PA, Ganz T (1997) Localization of human intestinal defensin 5 in Paneth cell granules. Infect Immun 65:2389–2395

    PubMed  CAS  Google Scholar 

  99. Zhao C, Wang I, Lehrer RI (1996) Widespread expression of beta-defensin hBD-1 in human secretory glands and epithelial cells. FEBS Lett 396:319–322

    Article  PubMed  CAS  Google Scholar 

  100. Ouellette AJ, Satchell DP, Hsieh MM, Hagen SJ, Selsted ME (2000) Characterization of luminal Paneth cell alpha-defensins in mouse small intestine. Attenuated antimicrobial activities of peptides with truncated amino termini. J Biol Chem 275:33969–33973

    Article  PubMed  CAS  Google Scholar 

  101. Condon MR, Viera A, D’Alessio M, Diamond G (1999) Induction of a rat enteric defensin gene by hemorrhagic shock. Infect Immun 67:4787–4793

    PubMed  CAS  Google Scholar 

  102. Jones DE, Bevins CL (1992) Paneth cells of the human small intestine express an antimicrobial peptide gene. J Biol Chem 267:23216–23225

    PubMed  CAS  Google Scholar 

  103. Tanabe H, Yuan J, Zaragoza MM, Dandekar S, Henschen-Edman A, Selsted ME, Ouellette AJ (2004) Paneth cell alpha-defensins from rhesus macaque small intestine. Infect Immun 72:1470–1478

    Article  PubMed  CAS  Google Scholar 

  104. Ouellette AJ, Bevins CL (2001) Paneth cell defensins and innate immunity of the small bowel. Inflamm Bowel Dis 7:43–50

    Article  PubMed  CAS  Google Scholar 

  105. Jones DE, Bevins CL (1993) Defensin-6 mRNA in human Paneth cells: implications for antimicrobial peptides in host defense of the human bowel. FEBS Lett 315:187–192

    Article  PubMed  CAS  Google Scholar 

  106. Ouellette AJ, Hsieh MM, Nosek MT, Cano-Gauci DF, Huttner KM, Buick RN, Selsted ME (1994) Mouse Paneth cell defensins: primary structures and antibacterial activities of numerous cryptdin isoforms. Infect Immun 62:5040–5047

    PubMed  CAS  Google Scholar 

  107. Mastroianni JR, Ouellette AJ (2009) Alpha-defensins in enteric innate immunity: functional Paneth cell alpha-defensins in mouse colonic lumen. J Biol Chem 284:27848–27856

    Article  PubMed  CAS  Google Scholar 

  108. Darmoul D, Brown D, Selsted ME, Ouellette AJ (1997) Cryptdin gene expression in developing mouse small intestine. Am J Physiol 272:G197–G206

    PubMed  CAS  Google Scholar 

  109. Bry L, Falk P, Huttner K, Ouellette A, Midtvedt T, Gordon JI (1994) Paneth cell differentiation in the developing intestine of normal and transgenic mice. Proc Natl Acad Sci USA 91:10335–10339

    Article  PubMed  CAS  Google Scholar 

  110. Mallow EB, Harris A, Salzman N, Russell JP, DeBerardinis RJ, Ruchelli E, Bevins CL (1996) Human enteric defensins. Gene structure and developmental expression. J Biol Chem 271:4038–4045

    Article  PubMed  CAS  Google Scholar 

  111. Salzman NH, Polin RA, Harris MC, Ruchelli E, Hebra A, Zirin-Butler S, Jawad A, Martin Porter E, Bevins CL (1998) Enteric defensin expression in necrotizing enterocolitis. Pediatr Res 44:20–26

    Article  PubMed  CAS  Google Scholar 

  112. Ayabe T, Satchell DP, Pesendorfer P, Tanabe H, Wilson CL, Hagen SJ, Ouellette AJ (2002) Activation of Paneth cell alpha-defensins in mouse small intestine. J Biol Chem 277:5219–5228

    Article  PubMed  CAS  Google Scholar 

  113. Quayle AJ, Porter EM, Nussbaum AA, Wang YM, Brabec C, Yip KP, Mok SC (1998) Gene expression, immunolocalization, and secretion of human defensin-5 in human female reproductive tract. Am J Pathol 152:1247–1258

    PubMed  CAS  Google Scholar 

  114. Svinarich DM, Wolf NA, Gomez R, Gonik B, Romero R (1997) Detection of human defensin 5 in reproductive tissues. Am J Obstet Gynecol 176:470–475

    Article  PubMed  CAS  Google Scholar 

  115. Frye M, Bargon J, Dauletbaev N, Weber A, Wagner TO, Gropp R (2000) Expression of human alpha-defensin 5 (HD5) mRNA in nasal and bronchial epithelial cells. J Clin Pathol 53:770–773

    Article  PubMed  CAS  Google Scholar 

  116. Com E, Bourgeon F, Evrard B, Ganz T, Colleu D, Jegou B, Pineau C (2003) Expression of antimicrobial defensins in the male reproductive tract of rats, mice, and humans. Biol Reprod 68:95–104

    Article  PubMed  CAS  Google Scholar 

  117. Grandjean V, Vincent S, Martin L, Rassoulzadegan M, Cuzin F (1997) Antimicrobial protection of the mouse testis: synthesis of defensins of the cryptdin family. Biol Reprod 57:1115–1122

    Article  PubMed  CAS  Google Scholar 

  118. Wu ER, Daniel R, Bateman A (1998) RK-2: a novel rabbit kidney defensin and its implications for renal host defense. Peptides 19:793–799

    Article  PubMed  CAS  Google Scholar 

  119. Bateman A, MacLeod RJ, Lembessis P, Hu J, Esch F, Solomon S (1996) The isolation and characterization of a novel corticostatin/defensin-like peptide from the kidney. J Biol Chem 271:10654–10659

    Article  PubMed  CAS  Google Scholar 

  120. Patil A, Hughes AL, Zhang G (2004) Rapid evolution and diversification of mammalian alpha-defensins as revealed by comparative analysis of rodent and primate genes. Physiol Genomics 20:1–11

    Article  PubMed  CAS  Google Scholar 

  121. Ouellette AJ, Cordell B (1988) Accumulation of abundant messenger ribonucleic acids during postnatal development of mouse small intestine. Gastroenterology 94:114–121

    PubMed  CAS  Google Scholar 

  122. Ouellette AJ, Pravtcheva D, Ruddle FH, James M (1989) Localization of the cryptdin locus on mouse chromosome 8. Genomics 5:233–239

    Article  PubMed  CAS  Google Scholar 

  123. Ouellette AJ, Miller SI, Henschen AH, Selsted ME (1992) Purification and primary structure of murine cryptdin-1, a Paneth cell defensin. FEBS Lett 304:146–148

    Article  PubMed  CAS  Google Scholar 

  124. Salzman NH, Underwood MA, Bevins CL (2007) Paneth cells, defensins, and the commensal microbiota: a hypothesis on intimate interplay at the intestinal mucosa. Semin Immunol 19:70–83

    Article  PubMed  CAS  Google Scholar 

  125. Schneider T, Sahl HG (2010) Lipid II and other bactoprenol-bound cell wall precursors as drug targets. Curr Opin Investig Drugs 11:157–164

    PubMed  CAS  Google Scholar 

  126. Bruhn O, Paul S, Tetens J, Thaller G (2009) The repertoire of equine intestinal alpha-defensins. BMC Genomics 10:631

    Article  PubMed  CAS  Google Scholar 

  127. Sparkes RS, Kronenberg M, Heinzmann C, Daher KA, Klisak I, Ganz T, Mohandas T (1989) Assignment of defensin gene(s) to human chromosome 8p23. Genomics 5:240–244

    Article  PubMed  CAS  Google Scholar 

  128. Ouellette AJ, Greco RM, James M, Frederick D, Naftilan J, Fallon JT (1989) Developmental regulation of cryptdin, a corticostatin/defensin precursor mRNA in mouse small intestinal crypt epithelium. J Cell Biol 108:1687–1695

    Article  PubMed  CAS  Google Scholar 

  129. Selsted ME, Ouellette AJ (1995) Defensins in granules of phagocytic and non-phagocytic cells. Trends Cell Biol 5:114–119

    Article  PubMed  CAS  Google Scholar 

  130. Linzmeier R, Michaelson D, Liu L, Ganz T (1993) The structure of neutrophil defensin genes. FEBS Lett 321:267–273

    Article  PubMed  CAS  Google Scholar 

  131. Ganz T (1994) Biosynthesis of defensins and other antimicrobial peptides. Ciba Found Symp 186:62–71 discussion 71-66

    PubMed  CAS  Google Scholar 

  132. Wei X, Eisman R, Xu J, Harsch AD, Mulberg AE, Bevins CL, Glick MC, Scanlin TF (1996) Turnover of the cystic fibrosis transmembrane conductance regulator (CFTR): slow degradation of wild-type and delta F508 CFTR in surface membrane preparations of immortalized airway epithelial cells. J Cell Physiol 168:373–384

    Article  PubMed  CAS  Google Scholar 

  133. Huttner KM, Selsted ME, Ouellette AJ (1994) Structure and diversity of the murine cryptdin gene family. Genomics 19:448–453

    Article  PubMed  CAS  Google Scholar 

  134. Ouellette AJ (2006) Paneth cell alpha-defensin synthesis and function. Curr Top Microbiol Immunol 306:1–25

    Article  PubMed  CAS  Google Scholar 

  135. Ganz T (1999) Defensins and host defense. Science 286:420–421

    Article  PubMed  CAS  Google Scholar 

  136. Yamamoto CM, Banaiee N, Yount NY, Patel B, Selsted ME (2004) Alpha-defensin expression during myelopoiesis: identification of cis and trans elements that regulate expression of NP-3 in rat promyelocytes. J Leukoc Biol 75:332–341

    Article  PubMed  CAS  Google Scholar 

  137. Valore EV, Ganz T (1992) Posttranslational processing of defensins in immature human myeloid cells. Blood 79:1538–1544

    PubMed  CAS  Google Scholar 

  138. Michaelson D, Rayner J, Couto M, Ganz T (1992) Cationic defensins arise from charge-neutralized propeptides: a mechanism for avoiding leukocyte autocytotoxicity? J Leukoc Biol 51:634–639

    PubMed  CAS  Google Scholar 

  139. Ganz T, Liu L, Valore EV, Oren A (1993) Posttranslational processing and targeting of transgenic human defensin in murine granulocyte, macrophage, fibroblast, and pituitary adenoma cell lines. Blood 82:641–650

    PubMed  CAS  Google Scholar 

  140. Valore EV, Martin E, Harwig SS, Ganz T (1996) Intramolecular inhibition of human defensin HNP-1 by its propiece. J Clin Invest 97:1624–1629

    Article  PubMed  CAS  Google Scholar 

  141. Borregaard N, Sorensen OE, Theilgaard-Monch K (2007) Neutrophil granules: a library of innate immunity proteins. Trends Immunol 28:340–345

    Article  PubMed  CAS  Google Scholar 

  142. Wilson CL, Ouellette AJ, Satchell DP, Ayabe T, Lopez-Boado YS, Stratman JL, Hultgren SJ, Matrisian LM, Parks WC (1999) Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286:113–117

    Article  PubMed  CAS  Google Scholar 

  143. Wilson CL, Heppner KJ, Rudolph LA, Matrisian LM (1995) The metalloproteinase matrilysin is preferentially expressed by epithelial cells in a tissue-restricted pattern in the mouse. Mol Biol Cell 6:851–869

    PubMed  CAS  Google Scholar 

  144. Shirafuji Y, Tanabe H, Satchell DP, Henschen-Edman A, Wilson CL, Ouellette AJ (2003) Structural determinants of procryptdin recognition and cleavage by matrix metalloproteinase-7. J Biol Chem 278:7910–7919

    Article  PubMed  CAS  Google Scholar 

  145. Weeks CS, Tanabe H, Cummings JE, Crampton SP, Sheynis T, Jelinek R, Vanderlick TK, Cocco MJ, Ouellette AJ (2006) Matrix metalloproteinase-7 activation of mouse Paneth cell pro-alpha-defensins: Ser43-Ile44 proteolysis enables membrane-disruptive activity. J Biol Chem 281:28932–28942

    Article  PubMed  CAS  Google Scholar 

  146. Tanabe H, Qu X, Weeks CS, Cummings JE, Kolusheva S, Walsh KB, Jelinek R, Vanderlick TK, Selsted ME, Ouellette AJ (2004) Structure-activity determinants in Paneth cell alpha-defensins: loss-of-function in mouse cryptdin-4 by charge-reversal at arginine residue positions. J Biol Chem 279:11976–11983

    Article  PubMed  CAS  Google Scholar 

  147. Figueredo SM, Weeks CS, Young SK, Ouellette AJ (2009) Anionic amino acids near the pro-alpha-defensin N terminus mediate inhibition of bactericidal activity in mouse pro-cryptdin-4. J Biol Chem 284:6826–6831

    Article  PubMed  CAS  Google Scholar 

  148. Ouellette AJ, Lauldi JC (1990) A novel gene family coding for cationic, cysteine-rich peptides. Regulation in mouse small intestine and cells of myeloid origin. J Biol Chem 265:9831–9837

    Google Scholar 

  149. Lin MY, Munshi IA, Ouellette AJ (1992) The defensin-related murine CRS1C gene: expression in Paneth cells and linkage to Defcr, the cryptdin locus. Genomics 14:363–368

    Article  PubMed  CAS  Google Scholar 

  150. Ouellette AJ, Lauldi JC (1994) A novel gene family coding for cationic, cysteine-rich peptides. Regulation in mouse small intestine and cells of myeloid origin. J Biol Chem 269:18702

    PubMed  CAS  Google Scholar 

  151. Huttner KM, Ouellette AJ (1994) A family of defensin-like genes codes for diverse cysteine-rich peptides in mouse Paneth cells. Genomics 24:99–109

    Article  PubMed  CAS  Google Scholar 

  152. Hornef MW, Putsep K, Karlsson J, Refai E, Andersson M (2004) Increased diversity of intestinal antimicrobial peptides by covalent dimer formation. Nat Immunol 5:836–843

    Article  PubMed  CAS  Google Scholar 

  153. Amid C, Rehaume LM, Brown KL, Gilbert JG, Dougan G, Hancock RE, Harrow JL (2009) Manual annotation and analysis of the defensin gene cluster in the C57BL/6 J mouse reference genome. BMC Genomics 10:606

    Article  PubMed  CAS  Google Scholar 

  154. Rivera-Nieves J, Bamias G, Vidrich A, Marini M, Pizarro TT, McDuffie MJ, Moskaluk CA, Cohn SM, Cominelli F (2003) Emergence of perianal fistulizing disease in the SAMP1/YitFc mouse, a spontaneous model of chronic ileitis. Gastroenterology 124:972–982

    Article  PubMed  Google Scholar 

  155. Cadwell K, Patel KK, Komatsu M, HWt Virgin, Stappenbeck TS (2009) A common role for Atg16L1, Atg5 and Atg7 in small intestinal Paneth cells and Crohn disease. Autophagy 5:250–252

    Article  PubMed  CAS  Google Scholar 

  156. Barnes SL, Vidrich A, Wang ML, Wu GD, Cominelli F, Rivera-Nieves J, Bamias G, Cohn SM (2007) Resistin-like molecule beta (RELMbeta/FIZZ2) is highly expressed in the ileum of SAMP1/YitFc mice and is associated with initiation of ileitis. J Immunol 179:7012–7020

    PubMed  CAS  Google Scholar 

  157. Tanabe H, Sato T, Watari J, Maemoto A, Fijiya M, Kono T, Ashida T, Ayabe T, Kohgo Y (2008) Functional role of metaplastic Paneth cell defensins in Helicobacter pylori-infected stomach. Helicobacter 13:370–379

    Article  PubMed  CAS  Google Scholar 

  158. Satoh Y, Habara Y, Ono K, Kanno T (1995) Carbamylcholine- and catecholamine-induced intracellular calcium dynamics of epithelial cells in mouse ileal crypts. Gastroenterology 108:1345–1356

    Article  PubMed  CAS  Google Scholar 

  159. Satoh Y, Ishikawa K, Oomori Y, Takeda S, Ono K (1992) Bethanechol and a G-protein activator, NaF/AlCl3, induce secretory response in Paneth cells of mouse intestine. Cell Tissue Res 269:213–220

    Article  PubMed  CAS  Google Scholar 

  160. Satoh Y, Ishikawa K, Oomori Y, Yamano M, Ono K (1989) Effects of cholecystokinin and carbamylcholine on Paneth cell secretion in mice: a comparison with pancreatic acinar cells. Anat Rec 225:124–132

    Article  PubMed  CAS  Google Scholar 

  161. Ayabe T, Wulff H, Darmoul D, Cahalan MD, Chandy KG, Ouellette AJ (2002) Modulation of mouse Paneth cell alpha-defensin secretion by mIKCa1, a Ca2+-activated, intermediate conductance potassium channel. J Biol Chem 277:3793–3800

    Article  PubMed  CAS  Google Scholar 

  162. Salzman NH, Hung K, Haribhai D, Chu H, Karlsson-Sjoberg J, Amir E, Teggatz P, Barman M, Hayward M, Eastwood D, Stoel M, Zhou Y, Sodergren E, Weinstock GM, Bevins CL, Williams CB, Bos NA (2010) Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol 11:76–83

    Article  PubMed  CAS  Google Scholar 

  163. Keshav S (2006) Paneth cells: leukocyte-like mediators of innate immunity in the intestine. J Leukoc Biol 80:500–508

    Article  PubMed  CAS  Google Scholar 

  164. Steenwinckel V, Louahed J, Lemaire MM, Sommereyns C, Warnier G, McKenzie A, Brombacher F, Van Snick J, Renauld JC (2009) IL-9 promotes IL-13-dependent Paneth cell hyperplasia and up-regulation of innate immunity mediators in intestinal mucosa. J Immunol 182:4737–4743

    Article  PubMed  CAS  Google Scholar 

  165. Garabedian EM, Roberts LJ, McNevin MS, Gordon JI (1997) Examining the role of Paneth cells in the small intestine by lineage ablation in transgenic mice. J Biol Chem 272:23729–23740

    Article  PubMed  CAS  Google Scholar 

  166. Kamal M, Dehlawi MS, Brunet LR, Wakelin D (2002) Paneth and intermediate cell hyperplasia induced in mice by helminth infections. Parasitology 125:275–281

    Article  PubMed  CAS  Google Scholar 

  167. Radojevic N, McKay DM, Merger M, Vallance BA, Collins SM, Croitoru K (1999) Characterization of enteric functional changes evoked by in vivo anti-CD3 T cell activation. Am J Physiol 276:R715–R723

    PubMed  CAS  Google Scholar 

  168. Clarke LL, Gawenis LR, Bradford EM, Judd LM, Boyle KT, Simpson JE, Shull GE, Tanabe H, Ouellette AJ, Franklin CL, Walker NM (2004) Abnormal Paneth cell granule dissolution and compromised resistance to bacterial colonization in the intestine of CF mice. Am J Physiol Gastrointest Liver Physiol 286:G1050–G1058

    Article  PubMed  CAS  Google Scholar 

  169. Norkina O, Burnett TG, De Lisle RC (2004) Bacterial overgrowth in the cystic fibrosis transmembrane conductance regulator null mouse small intestine. Infect Immun 72:6040–6049

    Article  PubMed  CAS  Google Scholar 

  170. Nieuwenhuis EE, Matsumoto T, Lindenbergh D, Willemsen R, Kaser A, Simons-Oosterhuis Y, Brugman S, Yamaguchi K, Ishikawa H, Aiba Y, Koga Y, Samsom JN, Oshima K, Kikuchi M, Escher JC, Hattori M, Onderdonk AB, Blumberg RS (2009) Cd1d-dependent regulation of bacterial colonization in the intestine of mice. J Clin Invest 119:1241–1250

    Article  PubMed  CAS  Google Scholar 

  171. Cash HL, Whitham CV, Behrendt CL, Hooper LV (2006) Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313:1126–1130

    Article  PubMed  CAS  Google Scholar 

  172. Hooper LV, Stappenbeck TS, Hong CV, Gordon JI (2003) Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol 4:269–273

    Article  PubMed  CAS  Google Scholar 

  173. Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV (2008) Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci USA 105:20858–20863

    Article  PubMed  CAS  Google Scholar 

  174. Brandl K, Plitas G, Schnabl B, DeMatteo RP, Pamer EG (2007) MyD88-mediated signals induce the bactericidal lectin RegIII gamma and protect mice against intestinal Listeria monocytogenes infection. J Exp Med 204:1891–1900

    Article  PubMed  CAS  Google Scholar 

  175. Foureau DM, Mielcarz DW, Menard LC, Schulthess J, Werts C, Vasseur V, Ryffel B, Kasper LH, Buzoni-Gatel D (2010) TLR9-dependent induction of intestinal alpha-defensins by Toxoplasma gondii. J Immunol 184:7022–7029

    Article  PubMed  CAS  Google Scholar 

  176. Cadwell K, Patel KK, Maloney NS, Liu TC, Ng AC, Storer CE, Head RD, Xavier R, Stappenbeck TS, Virgin HW (2010) Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell 141:1135–1145

    Article  PubMed  CAS  Google Scholar 

  177. Park SW, Zhen G, Verhaeghe C, Nakagami Y, Nguyenvu LT, Barczak AJ, Killeen N, Erle DJ (2009) The protein disulfide isomerase AGR2 is essential for production of intestinal mucus. Proc Natl Acad Sci USA 106:6950–6955

    Article  PubMed  CAS  Google Scholar 

  178. Leis O, Madrid JF, Ballesta J, Hernandez F (1997) N- and O-linked oligosaccharides in the secretory granules of rat Paneth cells: an ultrastructural cytochemical study. J Histochem Cytochem 45:285–293

    Article  PubMed  CAS  Google Scholar 

  179. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  PubMed  CAS  Google Scholar 

  180. Ouellette AJ, Selsted ME (2003) Antimicrobial effectors of small intestinal innate immunity. In: Hecht GA (ed) Microbial pathogens and the intestinal epithelial cell. ASM Press, Washington

    Google Scholar 

Download references

Acknowledgments

Supported by NIH Grants DK044632 and AI059346.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Joseph Ouellette.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouellette, A.J. Paneth cell α-defensins in enteric innate immunity. Cell. Mol. Life Sci. 68, 2215–2229 (2011). https://doi.org/10.1007/s00018-011-0714-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0714-6

Keywords

Navigation