Skip to main content
Log in

Axonal commissures in the central nervous system: how to cross the midline?

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Organisms with bilateral symmetry elaborate patterns of neuronal projections connecting both sides of the central nervous system at all levels of the neuraxis. During development, these so-called commissural projections navigate across the midline to innervate their contralateral targets. Commissural axon pathfinding has been extensively studied over the past years and turns out to be a highly complex process, implicating modulation of axon responsiveness to the various guidance cues that instruct axon trajectories towards, within and away from the midline. Understanding the molecular mechanisms allowing these switches of response to take place at the appropriate time and place is a major challenge for current research. Recent work characterized several instructive processes controlling the spatial and temporal fine-tuning of the guidance molecular machinery. These findings illustrate the molecular strategies by which commissural axons modulate their sensitivity to guidance cues during midline crossing and show that regulation at both transcriptional and post-transcriptional levels are crucial for commissural axon guidance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Bibliography

  1. Black DL, Zipursky SL (2008) To cross or not to cross: alternatively spliced forms of the Robo3 receptor regulate discrete steps in axonal midline crossing. Neuron 58(3):297–298

    PubMed  CAS  Google Scholar 

  2. Dickson BJ, Gilestro GF (2006) Regulation of commissural axon pathfinding by slit and its Robo receptors. Annu Rev Cell Dev Biol 22:651–675

    PubMed  CAS  Google Scholar 

  3. Evans TA, Bashaw GJ (2010) Axon guidance at the midline: of mice and flies. Curr Opin Neurobiol 20(1):79–85

    PubMed  CAS  Google Scholar 

  4. Shirasaki R, Katsumata R, Murakami F (1998) Change in chemoattractant responsiveness of developing axons at an intermediate target. Science 279(5347):105–107

    PubMed  CAS  Google Scholar 

  5. Brose K, Bland KS, Wang KH, Arnott D, Henzel W, Goodman CS, Tessier-Lavigne M, Kidd T (1999) Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 96(6):795–806

    PubMed  CAS  Google Scholar 

  6. Butler SJ, Dodd J (2003) A role for BMP heterodimers in roof plate-mediated repulsion of commissural axons. Neuron 38(3):389–401

    PubMed  CAS  Google Scholar 

  7. Charron F, Stein E, Jeong J, McMahon AP, Tessier-Lavigne M (2003) The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance. Cell 113(1):11–23

    PubMed  CAS  Google Scholar 

  8. Fazeli A, Dickinson SL, Hermiston ML, Tighe RV, Steen RG, Small CG, Stoeckli ET, Keino-Masu K, Masu M, Rayburn H, Simons J, Bronson RT, Gordon JI, Tessier-Lavigne M, Weinberg RA (1997) Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene. Nature 386(6627):796–804

    PubMed  CAS  Google Scholar 

  9. Gore BB, Wong KG, Tessier-Lavigne M (2008) Stem cell factor functions as an outgrowth-promoting factor to enable axon exit from the midline intermediate target. Neuron 57(4):501–510

    PubMed  CAS  Google Scholar 

  10. Jevince AR, Kadison SR, Pittman AJ, Chien CB, Kaprielian Z (2006) Distribution of EphB receptors and ephrin-B1 in the developing vertebrate spinal cord. J Comp Neurol 497(5):734–750

    PubMed  CAS  Google Scholar 

  11. Kadison SR, Makinen T, Klein R, Henkemeyer M, Kaprielian Z (2006) EphB receptors and ephrin-B3 regulate axon guidance at the ventral midline of the embryonic mouse spinal cord. J Neurosci 26(35):8909–8914

    PubMed  CAS  Google Scholar 

  12. Kullander K, Klein R (2002) Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol 3(7):475–486

    PubMed  CAS  Google Scholar 

  13. Ly A, Nikolaev A, Suresh G, Zheng Y, Tessier-Lavigne M, Stein E (2008) DSCAM is a netrin receptor that collaborates with DCC in mediating turning responses to netrin-1. Cell 133(7):1241–1254

    PubMed  CAS  Google Scholar 

  14. Lyuksyutova AI, Lu CC, Milanesio N, King LA, Guo N, Wang Y, Nathans J, Tessier-Lavigne M, Zou Y (2003) Anterior-posterior guidance of commissural axons by Wnt-frizzled signaling. Science 302(5652):1984–1988

    PubMed  CAS  Google Scholar 

  15. Matsumoto Y, Irie F, Inatani M, Tessier-Lavigne M, Yamaguchi Y (2007) Netrin-1/DCC signaling in commissural axon guidance requires cell-autonomous expression of heparan sulfate. J Neurosci 27(16):4342–4350

    PubMed  CAS  Google Scholar 

  16. Nawabi H, Briancon-Marjollet A, Clark C, Sanyas I, Takamatsu H, Okuno T, Kumanogoh A, Bozon M, Takeshima K, Yoshida Y, Moret F, Abouzid K, Castellani V (2010) A midline switch of receptor processing regulates commissural axon guidance in vertebrates. Genes Dev 24(4):396–410

    PubMed  CAS  Google Scholar 

  17. Okada A, Charron F, Morin S, Shin DS, Wong K, Fabre PJ, Tessier-Lavigne M, McConnell SK (2006) Boc is a receptor for sonic hedgehog in the guidance of commissural axons. Nature 444(7117):369–373

    PubMed  CAS  Google Scholar 

  18. Serafini T, Colamarino SA, Leonardo ED, Wang H, Beddington R, Skarnes WC, Tessier-Lavigne M (1996) Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 87(6):1001–1014

    PubMed  CAS  Google Scholar 

  19. Stoeckli ET, Landmesser LT (1995) Axonin-1, Nr-CAM, and Ng-CAM play different roles in the in vivo guidance of chick commissural neurons. Neuron 14(6):1165–1179

    PubMed  CAS  Google Scholar 

  20. Stoeckli ET, Sonderegger P, Pollerberg GE, Landmesser LT (1997) Interference with axonin-1 and NrCAM interactions unmasks a floor-plate activity inhibitory for commissural axons. Neuron 18(2):209–221

    PubMed  CAS  Google Scholar 

  21. Zou Y, Stoeckli E, Chen H, Tessier-Lavigne M (2000) Squeezing axons out of the gray matter: a role for slit and semaphorin proteins from midline and ventral spinal cord. Cell 102(3):363–375

    PubMed  CAS  Google Scholar 

  22. Kidd T, Bland KS, Goodman CS (1999) Slit is the midline repellent for the robo receptor in Drosophila. Cell 96(6):785–794

    PubMed  CAS  Google Scholar 

  23. Bourikas D, Pekarik V, Baeriswyl T, Grunditz A, Sadhu R, Nardo M, Stoeckli ET (2005) Sonic hedgehog guides commissural axons along the longitudinal axis of the spinal cord. Nat Neurosci 8(3):297–304. doi:10.1038/nn1396

    PubMed  CAS  Google Scholar 

  24. Winckler B, Mellman I (2010) Trafficking guidance receptors. Cold Spring Harb Perspect Biol 2(7):a001826

    PubMed  Google Scholar 

  25. Keleman K, Rajagopalan S, Cleppien D, Teis D, Paiha K, Huber LA, Technau GM, Dickson BJ (2002) Comm sorts robo to control axon guidance at the Drosophila midline. Cell 110(4):415–427

    PubMed  CAS  Google Scholar 

  26. Keleman K, Ribeiro C, Dickson BJ (2005) Comm function in commissural axon guidance: cell-autonomous sorting of Robo in vivo. Nat Neurosci 8(2):156–163

    PubMed  CAS  Google Scholar 

  27. Georgiou M, Tear G (2002) Commissureless is required both in commissural neurones and midline cells for axon guidance across the midline. Development (Cambridge) 129(12):2947–2956

    CAS  Google Scholar 

  28. Georgiou M, Tear G (2003) The N-terminal and transmembrane domains of Commissureless are necessary for its function and trafficking within neurons. Mech Dev 120(9):1009–1019

    PubMed  CAS  Google Scholar 

  29. Stein E, Tessier-Lavigne M (2001) Hierarchical organization of guidance receptors: silencing of netrin attraction by slit through a Robo/DCC receptor complex. Science 291(5510):1928–1938

    PubMed  CAS  Google Scholar 

  30. Bashaw GJ, Klein R (2010) Signaling from axon guidance receptors. Cold Spring Harb Perspect Biol 2(5):a001941

    PubMed  Google Scholar 

  31. Kania A, Jessell TM (2003) Topographic motor projections in the limb imposed by LIM homeodomain protein regulation of ephrin-A:EphA interactions. Neuron 38(4):581–596

    PubMed  CAS  Google Scholar 

  32. Kania A, Johnson RL, Jessell TM (2000) Coordinate roles for LIM homeobox genes in directing the dorsoventral trajectory of motor axons in the vertebrate limb. Cell 102(2):161–173

    PubMed  CAS  Google Scholar 

  33. Petros TJ, Rebsam A, Mason CA (2008) Retinal axon growth at the optic chiasm: to cross or not to cross. Annu Rev Neurosci 31:295–315

    PubMed  CAS  Google Scholar 

  34. Drager UC (1985) Birth dates of retinal ganglion cells giving rise to the crossed and uncrossed optic projections in the mouse. Proc R Soc Lond B 224(1234):57–77

    CAS  Google Scholar 

  35. Guillery RW, Mason CA, Taylor JS (1995) Developmental determinants at the mammalian optic chiasm. J Neurosci 15(7 Pt 1):4727–4737

    PubMed  CAS  Google Scholar 

  36. Marcus RC, Mason CA (1995) The first retinal axon growth in the mouse optic chiasm: axon patterning and the cellular environment. J Neurosci 15(10):6389–6402

    PubMed  CAS  Google Scholar 

  37. Sretavan DW, Reichardt LF (1993) Time-lapse video analysis of retinal ganglion cell axon pathfinding at the mammalian optic chiasm: growth cone guidance using intrinsic chiasm cues. Neuron 10(4):761–777

    PubMed  CAS  Google Scholar 

  38. Wizenmann A, Thanos S, von Boxberg Y, Bonhoeffer F (1993) Differential reaction of crossing and non-crossing rat retinal axons on cell membrane preparations from the chiasm midline: an in vitro study. Development (Cambridge) 117(2):725–735

    CAS  Google Scholar 

  39. Nakagawa S, Brennan C, Johnson KG, Shewan D, Harris WA, Holt CE (2000) Ephrin-B regulates the Ipsilateral routing of retinal axons at the optic chiasm. Neuron 25(3):599–610

    PubMed  CAS  Google Scholar 

  40. Williams SE, Mann F, Erskine L, Sakurai T, Wei S, Rossi DJ, Gale NW, Holt CE, Mason CA, Henkemeyer M (2003) Ephrin-B2 and EphB1 mediate retinal axon divergence at the optic chiasm. Neuron 39(6):919–935

    PubMed  CAS  Google Scholar 

  41. Petros TJ, Shrestha BR, Mason C (2009) Specificity and sufficiency of EphB1 in driving the ipsilateral retinal projection. J Neurosci 29(11):3463–3474

    PubMed  CAS  Google Scholar 

  42. Herrera E, Brown L, Aruga J, Rachel RA, Dolen G, Mikoshiba K, Brown S, Mason CA (2003) Zic2 patterns binocular vision by specifying the uncrossed retinal projection. Cell 114(5):545–557

    PubMed  CAS  Google Scholar 

  43. Merzdorf CS (2007) Emerging roles for zic genes in early development. Dev Dyn 236(4):922–940

    PubMed  CAS  Google Scholar 

  44. Garcia-Frigola C, Carreres MI, Vegar C, Mason C, Herrera E (2008) Zic2 promotes axonal divergence at the optic chiasm midline by EphB1-dependent and -independent mechanisms. Development (Cambridge) 135(10):1833–1841

    CAS  Google Scholar 

  45. Lee R, Petros TJ, Mason CA (2008) Zic2 regulates retinal ganglion cell axon avoidance of ephrinB2 through inducing expression of the guidance receptor EphB1. J Neurosci 28(23):5910–5919

    PubMed  CAS  Google Scholar 

  46. Wilson SI, Shafer B, Lee KJ, Dodd J (2008) A molecular program for contralateral trajectory: Rig-1 control by LIM homeodomain transcription factors. Neuron 59(3):413–424

    PubMed  CAS  Google Scholar 

  47. Gowan K, Helms AW, Hunsaker TL, Collisson T, Ebert PJ, Odom R, Johnson JE (2001) Crossinhibitory activities of Ngn1 and Math1 allow specification of distinct dorsal interneurons. Neuron 31(2):219–232

    PubMed  CAS  Google Scholar 

  48. Gross MK, Dottori M, Goulding M (2002) Lbx1 specifies somatosensory association interneurons in the dorsal spinal cord. Neuron 34(4):535–549

    PubMed  CAS  Google Scholar 

  49. Lee KJ, Mendelsohn M, Jessell TM (1998) Neuronal patterning by BMPs: a requirement for GDF7 in the generation of a discrete class of commissural interneurons in the mouse spinal cord. Genes Dev 12(21):3394–3407

    PubMed  CAS  Google Scholar 

  50. Helms AW, Johnson JE (2003) Specification of dorsal spinal cord interneurons. Curr Opin Neurobiol 13(1):42–49

    PubMed  CAS  Google Scholar 

  51. Bermingham NA, Hassan BA, Wang VY, Fernandez M, Banfi S, Bellen HJ, Fritzsch B, Zoghbi HY (2001) Proprioceptor pathway development is dependent on Math1. Neuron 30(2):411–422

    PubMed  CAS  Google Scholar 

  52. Helms AW, Johnson JE (1998) Progenitors of dorsal commissural interneurons are defined by MATH1 expression. Development (Cambridge) 125(5):919–928

    CAS  Google Scholar 

  53. Kidd T, Brose K, Mitchell KJ, Fetter RD, Tessier-Lavigne M, Goodman CS, Tear G (1998) Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell 92(2):205–215

    PubMed  CAS  Google Scholar 

  54. Kidd T, Russell C, Goodman CS, Tear G (1998) Dosage-sensitive and complementary functions of roundabout and commissureless control axon crossing of the CNS midline. Neuron 20(1):25–33

    PubMed  CAS  Google Scholar 

  55. Bonkowsky JL, Yoshikawa S, O’Keefe DD, Scully AL, Thomas JB (1999) Axon routing across the midline controlled by the Drosophila Derailed receptor. Nature 402(6761):540–544

    PubMed  CAS  Google Scholar 

  56. Yang L, Garbe DS, Bashaw GJ (2009) A frazzled/DCC-dependent transcriptional switch regulates midline axon guidance. Science 324(5929):944–947

    PubMed  CAS  Google Scholar 

  57. Liu QX, Hiramoto M, Ueda H, Gojobori T, Hiromi Y, Hirose S (2009) Midline governs axon pathfinding by coordinating expression of two major guidance systems. Genes Dev 23(10):1165–1170

    PubMed  CAS  Google Scholar 

  58. Buescher M, Svendsen PC, Tio M, Miskolczi-McCallum C, Tear G, Brook WJ, Chia W (2004) Drosophila T box proteins break the symmetry of hedgehog-dependent activation of wingless. Curr Biol 14(19):1694–1702

    PubMed  CAS  Google Scholar 

  59. Buescher M, Tio M, Tear G, Overton PM, Brook WJ, Chia W (2006) Functions of the segment polarity genes midline and H15 in Drosophila melanogaster neurogenesis. Dev Biol 292(2):418–429

    PubMed  CAS  Google Scholar 

  60. Gaziova I, Bhat KM (2009) Ancestry-independent fate specification and plasticity in the developmental timing of a typical Drosophila neuronal lineage. Development (Cambridge) 136(2):263–274

    CAS  Google Scholar 

  61. Leal SM, Qian L, Lacin H, Bodmer R, Skeath JB (2009) Neuromancer1 and Neuromancer2 regulate cell fate specification in the developing embryonic CNS of Drosophila melanogaster. Dev Biol 325(1):138–150

    PubMed  CAS  Google Scholar 

  62. Stennard FA, Harvey RP (2005) T-box transcription factors and their roles in regulatory hierarchies in the developing heart. Development (Cambridge) 132(22):4897–4910

    CAS  Google Scholar 

  63. Rajagopalan S, Nicolas E, Vivancos V, Berger J, Dickson BJ (2000) Crossing the midline: roles and regulation of Robo receptors. Neuron 28(3):767–777

    PubMed  CAS  Google Scholar 

  64. Simpson JH, Kidd T, Bland KS, Goodman CS (2000) Short-range and long-range guidance by slit and its Robo receptors Robo and Robo2 play distinct roles in midline guidance. Neuron 28(3):753–766

    PubMed  CAS  Google Scholar 

  65. Spitzweck B, Brankatschk M, Dickson BJ (2010) Distinct protein domains and expression patterns confer divergent axon guidance functions for Drosophila Robo receptors. Cell 140(3):409–420

    PubMed  CAS  Google Scholar 

  66. Black DL (2000) Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology. Cell 103(3):367–370

    PubMed  CAS  Google Scholar 

  67. Craig AM, Kang Y (2007) Neurexin-neuroligin signaling in synapse development. Curr Opin Neurobiol 17(1):43–52

    PubMed  CAS  Google Scholar 

  68. Chen Z, Gore BB, Long H, Ma L, Tessier-Lavigne M (2008) Alternative splicing of the Robo3 axon guidance receptor governs the midline switch from attraction to repulsion. Neuron 58(3):325–332

    PubMed  CAS  Google Scholar 

  69. Mambetisaeva ET, Andrews W, Camurri L, Annan A, Sundaresan V (2005) Robo family of proteins exhibit differential expression in mouse spinal cord and Robo-Slit interaction is required for midline crossing in vertebrate spinal cord. Dev Dyn 233(1):41–51

    PubMed  CAS  Google Scholar 

  70. Sabatier C, Plump AS, Le M, Brose K, Tamada A, Murakami F, Lee EY, Tessier-Lavigne M (2004) The divergent Robo family protein rig-1/Robo3 is a negative regulator of slit responsiveness required for midline crossing by commissural axons. Cell 117(2):157–169

    PubMed  CAS  Google Scholar 

  71. Lin AC, Tan CL, Lin CL, Strochlic L, Huang YS, Richter JD, Holt CE (2009) Cytoplasmic polyadenylation and cytoplasmic polyadenylation element-dependent mRNA regulation are involved in Xenopus retinal axon development. Neural Dev 4:8

    PubMed  Google Scholar 

  72. Richter JD (2007) CPEB: a life in translation. Trends Biochem Sci 32(6):279–285

    PubMed  CAS  Google Scholar 

  73. Bassell GJ, Warren ST (2008) Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron 60(2):201–214. doi:10.1016/j.neuron.2008.10.004

    PubMed  CAS  Google Scholar 

  74. Kuwako K, Kakumoto K, Imai T, Igarashi M, Hamakubo T, Sakakibara S, Tessier-Lavigne M, Okano HJ, Okano H (2010) Neural RNA-binding protein Musashi1 controls midline crossing of precerebellar neurons through posttranscriptional regulation of Robo3/Rig-1 expression. Neuron 67(3):407–421

    PubMed  CAS  Google Scholar 

  75. Di Meglio T, Nguyen-Ba-Charvet KT, Tessier-Lavigne M, Sotelo C, Chedotal A (2008) Molecular mechanisms controlling midline crossing by precerebellar neurons. J Neurosci 28(25):6285–6294

    PubMed  CAS  Google Scholar 

  76. Kuhl D, Skehel P (1998) Dendritic localization of mRNAs. Curr Opin Neurobiol 8(5):600–606

    PubMed  CAS  Google Scholar 

  77. Martin KC, Barad M, Kandel ER (2000) Local protein synthesis and its role in synapse-specific plasticity. Curr Opin Neurobiol 10(5):587–592

    PubMed  CAS  Google Scholar 

  78. Steward O (1997) mRNA localization in neurons: a multipurpose mechanism? Neuron 18(1):9–12

    PubMed  CAS  Google Scholar 

  79. Steward O, Levy WB (1982) Preferential localization of polyribosomes under the base of dendritic spines in granule cells of the dentate gyrus. J Neurosci 2(3):284–291

    PubMed  CAS  Google Scholar 

  80. Davis L, Dou P, De Wit M, Kater SB (1992) Protein synthesis within neuronal growth cones. J Neurosci 12(12):4867–4877

    PubMed  CAS  Google Scholar 

  81. Campbell DS, Holt CE (2001) Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 32(6):1013–1026

    PubMed  CAS  Google Scholar 

  82. Merianda TT, Lin AC, Lam JS, Vuppalanchi D, Willis DE, Karin N, Holt CE, Twiss JL (2009) A functional equivalent of endoplasmic reticulum and Golgi in axons for secretion of locally synthesized proteins. Mol Cell Neurosci 40(2):128–142

    PubMed  CAS  Google Scholar 

  83. Horton AC, Ehlers MD (2003) Dual modes of endoplasmic reticulum-to-Golgi transport in dendrites revealed by live-cell imaging. J Neurosci 23(15):6188–6199

    PubMed  CAS  Google Scholar 

  84. Zivraj KH, Tung YC, Piper M, Gumy L, Fawcett JW, Yeo GS, Holt CE (2010) Subcellular profiling reveals distinct and developmentally regulated repertoire of growth cone mRNAs. J Neurosci 30(46):15464–15478

    PubMed  CAS  Google Scholar 

  85. Lin AC, Holt CE (2007) Local translation and directional steering in axons. EMBO J 26(16):3729–3736

    PubMed  CAS  Google Scholar 

  86. Lin AC, Holt CE (2008) Function and regulation of local axonal translation. Curr Opin Neurobiol 18(1):60–68

    PubMed  CAS  Google Scholar 

  87. Roche FK, Marsick BM, Letourneau PC (2009) Protein synthesis in distal axons is not required for growth cone responses to guidance cues. J Neurosci 29(3):638–652

    PubMed  CAS  Google Scholar 

  88. Hengst U, Deglincerti A, Kim HJ, Jeon NL, Jaffrey SR (2009) Axonal elongation triggered by stimulus-induced local translation of a polarity complex protein. Nat Cell Biol 11(8):1024–1030

    PubMed  CAS  Google Scholar 

  89. Dubacq C, Jamet S, Trembleau A (2009) Evidence for developmentally regulated local translation of odorant receptor mRNAs in the axons of olfactory sensory neurons. J Neurosci 29(33):10184–10190

    PubMed  CAS  Google Scholar 

  90. Brittis PA, Lu Q, Flanagan JG (2002) Axonal protein synthesis provides a mechanism for localized regulation at an intermediate target. Cell 110(2):223–235

    PubMed  CAS  Google Scholar 

  91. Tcherkezian J, Brittis PA, Thomas F, Roux PP, Flanagan JG (2010) Transmembrane receptor DCC associates with protein synthesis machinery and regulates translation. Cell 141(4):632–644

    PubMed  CAS  Google Scholar 

  92. Evans TA, Bashaw GJ (2010) Functional diversity of Robo receptor immunoglobulin domains promotes distinct axon guidance decisions. Curr Biol 20(6):567–572

    PubMed  CAS  Google Scholar 

  93. Gilestro GF (2008) Redundant mechanisms for regulation of midline crossing in Drosophila. PloS one 3(11):e3798

    PubMed  Google Scholar 

  94. Coleman HA, Labrador JP, Chance RK, Bashaw GJ (2010) The Adam family metalloprotease Kuzbanian regulates the cleavage of the roundabout receptor to control axon repulsion at the midline. Development (Cambridge) 137(14):2417–2426

    CAS  Google Scholar 

  95. Hattori M, Osterfield M, Flanagan JG (2000) Regulated cleavage of a contact-mediated axon repellent. Science 289(5483):1360–1365

    PubMed  CAS  Google Scholar 

  96. Chedotal A (2007) Slits and their receptors. Adv Exp Med Biol 621:65–80

    PubMed  Google Scholar 

  97. Bagnard D, Lohrum M, Uziel D, Puschel AW, Bolz J (1998) Semaphorins act as attractive and repulsive guidance signals during the development of cortical projections. Development (Cambridge) 125(24):5043–5053

    CAS  Google Scholar 

  98. Falk J, Bechara A, Fiore R, Nawabi H, Zhou H, Hoyo-Becerra C, Bozon M, Rougon G, Grumet M, Puschel AW, Sanes JR, Castellani V (2005) Dual functional activity of semaphorin 3B is required for positioning the anterior commissure. Neuron 48(1):63–75

    PubMed  Google Scholar 

  99. Kolodkin AL, Matthes DJ, Goodman CS (1993) The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules. Cell 75(7):1389–1399

    PubMed  CAS  Google Scholar 

  100. Luo Y, Raible D, Raper JA (1993) Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell 75(2):217–227

    PubMed  CAS  Google Scholar 

  101. Huber AB, Kolodkin AL, Ginty DD, Cloutier JF (2003) Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance. Annu Rev Neurosci 26:509–563

    PubMed  CAS  Google Scholar 

  102. Kruger RP, Aurandt J, Guan KL (2005) Semaphorins command cells to move. Nat Rev Mol Cell Biol 6(10):789–800

    PubMed  CAS  Google Scholar 

  103. Fujisawa H, Ohtsuki T, Takagi S, Tsuji T (1989) An aberrant retinal pathway and visual centers in Xenopus tadpoles share a common cell surface molecule, A5 antigen. Dev Biol 135(2):231–240

    PubMed  CAS  Google Scholar 

  104. He Z, Tessier-Lavigne M (1997) Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell 90(4):739–751

    PubMed  CAS  Google Scholar 

  105. Kolodkin AL, Levengood DV, Rowe EG, Tai YT, Giger RJ, Ginty DD (1997) Neuropilin is a semaphorin III receptor. Cell 90(4):753–762

    PubMed  CAS  Google Scholar 

  106. Satoda M, Takagi S, Ohta K, Hirata T, Fujisawa H (1995) Differential expression of two cell surface proteins, neuropilin and plexin, in Xenopus olfactory axon subclasses. J Neurosci 15(1 Pt 2):942–955

    PubMed  CAS  Google Scholar 

  107. Takagi S, Kasuya Y, Shimizu M, Matsuura T, Tsuboi M, Kawakami A, Fujisawa H (1995) Expression of a cell adhesion molecule, neuropilin, in the developing chick nervous system. Dev Biol 170(1):207–222

    PubMed  CAS  Google Scholar 

  108. Fujisawa H (2004) Discovery of semaphorin receptors, neuropilin and plexin, and their functions in neural development. J Neurobiol 59(1):24–33

    PubMed  CAS  Google Scholar 

  109. Schwarz Q, Ruhrberg C (2010) Neuropilin, you gotta let me know: should I stay or should I go? Cell Adh Migr 4(1):61–66

    PubMed  Google Scholar 

  110. Kameyama T, Murakami Y, Suto F, Kawakami A, Takagi S, Hirata T, Fujisawa H (1996) Identification of plexin family molecules in mice. Biochem Biophys Res Commun 226(2):396–402

    PubMed  CAS  Google Scholar 

  111. Ohta K, Takagi S, Asou H, Fujisawa H (1992) Involvement of neuronal cell surface molecule B2 in the formation of retinal plexiform layers. Neuron 9(1):151–161

    PubMed  CAS  Google Scholar 

  112. Takahashi T, Fournier A, Nakamura F, Wang LH, Murakami Y, Kalb RG, Fujisawa H, Strittmatter SM (1999) Plexin-neuropilin-1 complexes form functional semaphorin-3A receptors. Cell 99(1):59–69

    PubMed  CAS  Google Scholar 

  113. Tamagnone L, Artigiani S, Chen H, He Z, Ming GI, Song H, Chedotal A, Winberg ML, Goodman CS, Poo M, Tessier-Lavigne M, Comoglio PM (1999) Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell 99(1):71–80

    PubMed  CAS  Google Scholar 

  114. Rohm B, Ottemeyer A, Lohrum M, Puschel AW (2000) Plexin/neuropilin complexes mediate repulsion by the axonal guidance signal semaphorin 3A. Mech Dev 93(1–2):95–104

    PubMed  CAS  Google Scholar 

  115. Negishi M, Oinuma I, Katoh H (2005) Plexins: axon guidance and signal transduction. Cell Mol Life Sci 62(12):1363–1371

    PubMed  CAS  Google Scholar 

  116. Bechara A, Nawabi H, Moret F, Yaron A, Weaver E, Bozon M, Abouzid K, Guan JL, Tessier-Lavigne M, Lemmon V, Castellani V (2008) FAK-MAPK-dependent adhesion disassembly downstream of L1 contributes to semaphorin3A-induced collapse. EMBO J 27(11):1549–1562

    PubMed  CAS  Google Scholar 

  117. Parra LM, Zou Y (2010) Sonic hedgehog induces response of commissural axons to Semaphorin repulsion during midline crossing. Nat Neurosci 13(1):29–35

    PubMed  CAS  Google Scholar 

  118. Carragher NO, Frame MC (2002) Calpain: a role in cell transformation and migration. Int J Biochem Cell Biol 34(12):1539–1543

    PubMed  CAS  Google Scholar 

  119. Wu HY, Lynch DR (2006) Calpain and synaptic function. Mol Neurobiol 33(3):215–236

    PubMed  Google Scholar 

  120. Bai G, Chivatakarn O, Bonanomi D, Lettieri K, Franco L, Xia C, Stein E, Ma L, Lewcock JW, Pfaff SL (2011) Presenilin-dependent receptor processing is required for axon guidance. Cell 144(1):106–118

    PubMed  CAS  Google Scholar 

  121. Chow VW, Mattson MP, Wong PC, Gleichmann M (2010) An overview of APP processing enzymes and products. Neuromolecular Med 12(1):1–12

    PubMed  CAS  Google Scholar 

  122. Guardia-Laguarta C, Pera M, Lleo A (2010) gamma-Secretase as a therapeutic target in Alzheimer’s disease. Curr Drug Targets 11(4):506–517

    PubMed  CAS  Google Scholar 

  123. Jorissen E, De Strooper B (2010) Gamma-secretase and the intramembrane proteolysis of Notch. Curr Top Dev Biol 92:201–230

    PubMed  CAS  Google Scholar 

  124. Taniguchi Y, Kim SH, Sisodia SS (2003) Presenilin-dependent “gamma-secretase” processing of deleted in colorectal cancer (DCC). J Biol Chem 278(33):30425–30428

    PubMed  CAS  Google Scholar 

  125. Sorimachi H, Hata S, Ono Y (2010) Expanding members and roles of the calpain superfamily and their genetically modified animals. Exp Anim 59(5):549–566

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge E. A. Derrington for helpful comments and manuscript reading. VC is supported by the "Fondation pour la Recherche Médicale (FRM) and the "Agence Nationale pour la Recherche" ANR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Homaira Nawabi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nawabi, H., Castellani, V. Axonal commissures in the central nervous system: how to cross the midline?. Cell. Mol. Life Sci. 68, 2539–2553 (2011). https://doi.org/10.1007/s00018-011-0691-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0691-9

Keywords

Navigation