Skip to main content

Advertisement

Log in

Insights into MHC class I antigen processing gained from large-scale analysis of class I ligands

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Short peptides derived from intracellular proteins and presented on MHC class I molecules on the cell surface serve as a showcase for the immune system to detect pathogenic or malignant alterations inside the cell, and the sequencing and analysis of the presented peptide pool has received considerable attention over the last two decades. In this review, we give a comprehensive presentation of the methods employed for the large-scale qualitative and quantitative analysis of the MHC class I ligandome. Furthermore, we focus on insights gained into the underlying processing pathway, especially involving the roles of the proteasome, the TAP complex, and the peptide specificities and motifs of MHC molecules. The identification of post-translational modifications in MHC ligands and their implications for processing are also considered. Finally, we review the correlations of the ligandome to the proteome and the transcriptome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rammensee HG, Falk K, Rötzschke O (1993) Peptides naturally presented by MHC class I molecules. Annu Rev Immunol 11:213–244

    PubMed  CAS  Google Scholar 

  2. Stevanović S, Schild H (1999) Quantitative aspects of T cell activation—peptide generation and editing by MHC class I molecules. Semin Immunol 11(6):375–384

    PubMed  Google Scholar 

  3. Reits EA, Benham AM, Plougastel B, Neefjes J, Trowsdale J (1997) Dynamics of proteasome distribution in living cells. EMBO J 16(20):6087–6094

    PubMed  CAS  Google Scholar 

  4. Storkus WJ, Zeh HJ 3rd, Salter RD, Lotze MT (1993) Identification of T-cell epitopes: rapid isolation of class I-presented peptides from viable cells by mild acid elution. J Immunother Emphasis Tumor Immunol 14(2):94–103

    PubMed  CAS  Google Scholar 

  5. Torabi-Pour N, Nouri AM, Saffie R, Oliver RT (2002) Comparative study between direct mild acid extraction and immunobead purification technique for isolation of HLA class I-associated peptides. Urol Int 68(1):38–43

    PubMed  CAS  Google Scholar 

  6. Van Bleek GM, Nathenson SG (1990) Isolation of an endogenously processed immunodominant viral peptide from the class I H-2 Kb molecule. Nature 348(6298):213–216

    PubMed  Google Scholar 

  7. Yu YQ, Gilar M, Lee PJ, Bouvier ES, Gebler JC (2003) Enzyme-friendly, mass spectrometry-compatible surfactant for in-solution enzymatic digestion of proteins. Anal Chem 75(21):6023–6028

    PubMed  CAS  Google Scholar 

  8. Bluestone JA, Jameson S, Miller S, Dick R 2nd (1992) Peptide-induced conformational changes in class I heavy chains alter major histocompatibility complex recognition. J Exp Med 176(6):1757–1761

    PubMed  CAS  Google Scholar 

  9. Solheim JC, Carreno BM, Smith JD, Gorka J, Myers NB, Wen Z, Martinko JM, Lee DR, Hansen TH (1993) Binding of peptides lacking consensus anchor residue alters H-2Ld serologic recognition. J Immunol 151(10):5387–5397

    PubMed  CAS  Google Scholar 

  10. Prilliman K, Lindsey M, Zuo Y, Jackson KW, Zhang Y, Hildebrand W (1997) Large-scale production of class I bound peptides: assigning a signature to HLA-B*1501. Immunogenetics 45(6):379–385

    PubMed  CAS  Google Scholar 

  11. Purcell AW, Gorman JJ (2001) The use of post-source decay in matrix-assisted laser desorption/ionisation mass spectrometry to delineate T cell determinants. J Immunol Methods 249(1–2):17–31

    PubMed  CAS  Google Scholar 

  12. Weinschenk T, Gouttefangeas C, Schirle M, Obermayr F, Walter S, Schoor O, Kurek R, Loeser W, Bichler KH, Wernet D, Stevanović S, Rammensee HG (2002) Integrated functional genomics approach for the design of patient-individual antitumor vaccines. Cancer Res 62(20):5818–5827

    PubMed  CAS  Google Scholar 

  13. Edman P (1949) A method for the determination of amino acid sequence in peptides. Arch Biochem 22(3):475

    PubMed  CAS  Google Scholar 

  14. Hunt DF, Henderson RA, Shabanowitz J, Sakaguchi K, Michel H, Sevilir N, Cox AL, Appella E, Engelhard VH (1992) Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science 255(5049):1261–1263

    PubMed  CAS  Google Scholar 

  15. Aebersold R, Goodlett DR (2001) Mass spectrometry in proteomics. Chem Rev 101(2):269–295

    PubMed  CAS  Google Scholar 

  16. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    PubMed  CAS  Google Scholar 

  17. Pascolo S, Schirle M, Gückel B, Dumrese T, Stumm S, Kayser S, Moris A, Wallwiener D, Rammensee HG, Stevanović S (2001) A MAGE-A1 HLA-A A*0201 epitope identified by mass spectrometry. Cancer Res. 61(10):4072–4077

    PubMed  CAS  Google Scholar 

  18. Schirle M, Keilholz W, Weber B, Gouttefangeas C, Dumrese T, Becker HD, Stevanović S, Rammensee HG (2000) Identification of tumor-associated MHC class I ligands by a novel T cell-independent approach. Eur J Immunol 30(8):2216–2225

    PubMed  CAS  Google Scholar 

  19. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999

    PubMed  CAS  Google Scholar 

  20. Mason DE, Liebler DC (2003) Quantitative analysis of modified proteins by LC–MS/MS of peptides labeled with phenyl isocyanate. J Proteome Res 2(3):265–272

    PubMed  CAS  Google Scholar 

  21. Cagney G, Emili A (2002) De novo peptide sequencing and quantitative profiling of complex protein mixtures using mass-coded abundance tagging. Nat Biotechnol 20(2):163–170

    PubMed  CAS  Google Scholar 

  22. Lemmel C, Weik S, Eberle U, Dengjel J, Kratt T, Becker HD, Rammensee HG, Stevanović S (2004) Differential quantitative analysis of MHC ligands by mass spectrometry using stable isotope labeling. Nat Biotechnol 22(4):450–454

    PubMed  CAS  Google Scholar 

  23. Münchbach M, Quadroni M, Miotto G, James P (2000) Quantitation and facilitated de novo sequencing of proteins by isotopic N-terminal labeling of peptides with a fragmentation-directing moiety. Anal Chem 72(17):4047–4057

    PubMed  Google Scholar 

  24. Schmidt A, Kellermann J, Lottspeich F (2005) A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 5(1):4–15

    PubMed  CAS  Google Scholar 

  25. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martein S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169

    PubMed  CAS  Google Scholar 

  26. Choe L, D’Ascenzo M, Relkin NR, Pappin D, Ross P, Williamson B, Guertin S, Pribil P, Lee KH (2007) 8-plex quantitation of changes in cerebrospinal fluid protein expression in subjects undergoing intravenous immunoglobulin treatment for Alzheimer’s disease. Proteomics 7(20):3651–3660

    PubMed  CAS  Google Scholar 

  27. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386

    PubMed  CAS  Google Scholar 

  28. Desiderio DM, Kai M (1998) Preparation of stable isotope-incorporated peptide internal standards for field desorption mass spectrometry quantification of peptides in biologic tissue. Biomed Mass Spectrom 10(8):471–479

    Google Scholar 

  29. Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci USA 100(12):6940–6945

    PubMed  CAS  Google Scholar 

  30. Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513

    PubMed  CAS  Google Scholar 

  31. Groettrup M, Kirk CJ, Basler M (2010) Proteasomes in immune cells: more than peptide producers? Nat Rev Immunol 10(1):73–78

    PubMed  CAS  Google Scholar 

  32. Hammer GE, Kanaseki T, Shastri N (2007) The final touches make perfect the peptide-MHC class I repertoire. Immunity 26(4):397–406

    PubMed  CAS  Google Scholar 

  33. Aki M, Shimbara N, Takashina M, Akiyama K, Kagawa S, Tamura T, Tanahashi N, Yoshimura T, Tanaka K, Ichihara A (1994) Interferon-gamma induces different subunit organizations and functional diversity of proteasomes. J Biochem 115(2):257–269

    PubMed  CAS  Google Scholar 

  34. Van den Eynde BJ, Morel S (2001) Differential processing of class-I-restricted epitopes by the standard proteasome and the immunoproteasome. Curr Opin Immunol 13(2):147–153

    PubMed  Google Scholar 

  35. Toes RE, Nussbaum AK, Degermann S, Schirle M, Emmerich NP, Kraft M, Laplace C, Zwinderman A, Dick TP, Müller J, Schönfisch B, Schmid C, Fehling HJ, Stevanović S, Rammensee HG, Schild H (2001) Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products. J Exp Med 194(1):1–12

    PubMed  CAS  Google Scholar 

  36. Nussbaum AK, Dick TP, Keilholz W, Schirle M, Stevanović S, Dietz K, Heinemeyer W, Groll M, Wolf DH, Huber R, Rammensee HG, Schild H (1998) Cleavage motifs of the yeast 20S proteasome beta subunits deduced from digests of enolase 1. Proc Natl Acad Sci USA 95(21):12504–12509

    PubMed  CAS  Google Scholar 

  37. Kisselev AF, Akopian TN, Woo KM, Goldberg AL (1999) The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes. Implications for understanding the degradative mechanism and antigen presentation. J Biol Chem 274(6):3363–3371

    PubMed  CAS  Google Scholar 

  38. Beninga J, Rock KL, Goldberg AL (1998) Interferon-gamma can stimulate post-proteasomal trimming of the N terminus of an antigenic peptide by inducing leucine aminopeptidase. J Biol Chem 273(30):18734–18742

    PubMed  CAS  Google Scholar 

  39. Stoltze L, Schirle M, Schwarz G, Schröter C, Thompson MW, Hersh LB, Kalbacher H, Stevanović S, Rammensee HG, Schild H (2000) Two new proteases in the MHC class I processing pathway. Nat Immunol 1(5):413–418

    PubMed  CAS  Google Scholar 

  40. Reits E, Neijssen J, Herberts C, Benckhuijsen W, Janssen L, Drijfhout JW, Neefjes J (2004) A major role for TPPII in trimming proteasomal degradation products for MHC class I antigen presentation. Immunity 20(4):495–506

    PubMed  CAS  Google Scholar 

  41. Momburg F, Roelse J, Hämmerling GJ, Neefjes JJ (1994) Peptide size selection by the major histocompatibility complex-encoded peptide transporter. J Exp Med 179(5):1613–1623

    PubMed  CAS  Google Scholar 

  42. Koopmann JO, Post M, Neefjes JJ, Hämmerling GJ, Momburg F (1996) Translocation of long peptides by transporters associated with antigen processing (TAP). Eur J Immunol 26(8):1720–1728

    PubMed  CAS  Google Scholar 

  43. Van Endert PM, Riganelli D, Greco G, Fleischhauer K, Sidney J, Sette A, Bach JF (1995) The peptide-binding motif for the human transporter associated with antigen processing. J Exp Med 182(6):1883–1895

    PubMed  Google Scholar 

  44. Dick TP, Bangia N, Peaper DR, Cresswell P (2002) Disulfide bond isomerization and the assembly of MHC class I-peptide complexes. Immunity 16(1):87–98

    PubMed  CAS  Google Scholar 

  45. Peaper DR, Wearsch PA, Cresswell P (2005) Tapasin and ERp57 form a stable disulfide-linked dimer within the MHC class I peptide-loading complex. EMBO J 24(20):3613–3623

    PubMed  CAS  Google Scholar 

  46. Wearsch PA, Cresswell P (2007) Selective loading of high-affinity peptides onto major histocompatibility complex class I molecules by the tapasin-ERp57 heterodimer. Nat Immunol 8(8):873–881

    PubMed  CAS  Google Scholar 

  47. Saric T, Chang SC, Hattori A, York IA, Markant S, Rock KL, Tsujimoto M, Goldberg AL (2002) An IFN-gamma-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I-presented peptides. Nat Immunol 3(12):1169–1176

    PubMed  CAS  Google Scholar 

  48. Henderson RA, Michel H, Sakaguchi K, Shabanowitz J, Appella E, Hunt DF, Engelhard VH (1992) HLA-A2.1-associated peptides from a mutant cell line: a second pathway of antigen presentation. Science 255(5049):1264–1266

    PubMed  CAS  Google Scholar 

  49. Wei ML, Cresswell P (1992) HLA-A2 molecules in an antigen-processing mutant cell contain signal sequence-derived peptides. Nature 356(6368):443–446

    PubMed  CAS  Google Scholar 

  50. Weinzierl AO, Rudolf D, Hillen N, Tenzer S, van Endert P, Schild H, Rammensee HG, Stevanović S (2008) Features of TAP-independent MHC class I ligands revealed by quantitative mass spectrometry. Eur J Immunol 38(6):1503–1510

    PubMed  CAS  Google Scholar 

  51. Neisig A, Roelse J, Sijts AJ, Ossendorp F, Feltkamp MC, Kast WM, Melief CJ, Neefjes JJ (1995) Major differences in transporter associated with antigen presentation (TAP)-dependent translocation of MHC class I-presentable peptides and the effect of flanking sequences. J Immunol 154(3):1273–1279

    PubMed  CAS  Google Scholar 

  52. Daniel S, Brusic V, Caillat-Zucman S, Petrovsky N, Harrison L, Riganelli D, Sinigaglia F, Gallazzi F, Hammer J, van Endert PM (1998) Relationship between peptide selectivities of human transporters associated with antigen processing and HLA class I molecules. J Immunol 161(2):617–624

    PubMed  CAS  Google Scholar 

  53. Fruci D, Lauvau G, Saveanu L, Amicosante M, Butler RH, Polack A, Ginhoux F, Lemonnier F, Firat H, van Endert PM (2003) Quantifying recruitment of cytosolic peptides for HLA class I presentation: impact of TAP transport. J Immunol 170(6):2977–2984

    PubMed  CAS  Google Scholar 

  54. Falk K, Rötzschke O, Stevanović S, Jung G, Rammensee HG (1991) Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351(6324):290–296

    PubMed  CAS  Google Scholar 

  55. Rammensee HG, Bachmann J, Emmerich NP, Bachor OA, Stevanović S (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50(3–4):213–219

    PubMed  CAS  Google Scholar 

  56. Saper MA, Bjorkman PJ, Wiley DC (1991) Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 A resolution. J Mol Biol 219(2):277–319

    PubMed  CAS  Google Scholar 

  57. Rammensee HG, Friede T, Stevanović S (1995) MHC ligands and peptide motifs: first listing. Immunogenetics 41(4):178–228

    PubMed  CAS  Google Scholar 

  58. DiBrino M, Tsuchida T, Turner RV, Parker KC, Coligan JE, Biddison WE (1993) HLA-A1 and HLA-A3 T cell epitopes derived from influenza virus proteins predicted from peptide binding motifs. J Immunol 151(11):5930–5935

    PubMed  CAS  Google Scholar 

  59. Ruppert J, Sidney J, Celis E, Kubo RT, Grey HM, Sette A (1993) Prominent role of secondary anchor residues in peptide binding to HLA-A2.1 molecules. Cell 74(5):929–937

    PubMed  CAS  Google Scholar 

  60. Cowan EP, Jordan BR, Coligan JE (1985) Molecular cloning and DNA sequence analysis of genes encoding cytotoxic T lymphocyte-defined HLA-A3 subtypes: the E1 subtype. J Immunol 135(4):2835–2841

    PubMed  CAS  Google Scholar 

  61. Hill AV, Allsopp CE, Kwiatkowski D, Anstey NM, Greenwood BM, McMichael AJ (1991) HLA class I typing by PCR: HLA-B27 and an African B27 subtype. Lancet 337(8742):640–642

    PubMed  CAS  Google Scholar 

  62. Barouch D, Friede T, Stevanović S, Tussey L, Smith K, Rowland-Jones S, Braud V, McMichael A, Rammensee HG (1995) HLA-A2 subtypes are functionally distinct in peptide binding and presentation. J Exp Med 182(6):1847–1856

    PubMed  CAS  Google Scholar 

  63. Sudo T, Kamikawaji N, Kimura A, Date Y, Savoie CJ, Nakashima H, Furuichi E, Kuhara S, Sasazuki T (1995) Differences in MHC class I self peptide repertoires among HLA-A2 subtypes. J Immunol 155(10):4749–4756

    PubMed  CAS  Google Scholar 

  64. Sidney J, Grey HM, Kubo RT, Sette A (1996) Practical, biochemical and evolutionary implications of the discovery of HLA class I supermotifs. Immunol Today 17(6):261–266

    PubMed  CAS  Google Scholar 

  65. Sidney J, Peters B, Frahm N, Brander C, Sette A (2008) HLA class I supertypes: a revised and updated classification. BMC Immunol 9:1

    PubMed  Google Scholar 

  66. Hillen N, Mester G, Lemmel C, Weinzierl AO, Müller M, Wernet D, Hennenlotter J, Stenzl A, Rammensee HG, Stevanović S (2008) Essential differences in ligand presentation and T cell epitope recognition among HLA molecules of the HLA-B44 supertype. Eur J Immunol 38(11):2993–3003

    PubMed  CAS  Google Scholar 

  67. Ovsyannikova IG, Vierkant RA, Pankratz VS, O’Byrne MM, Jacobson RM, Poland GA (2009) HLA haplotype and supertype associations with cellular immune responses and cytokine production in healthy children after rubella vaccine. Vaccine 27(25–26):3349–3358

    PubMed  CAS  Google Scholar 

  68. Lazaryan A, Song W, Lobashevsky E, Tang J, Shrestha S, Zhang K, Gardner LI, McNicholl JM, Wilson CM, Klein RS, Rompalo A, Mayer K, Sobel J, Kaslow RA (2010) Human leukocyte antigen class I supertypes and HIV-1 control in African Americans. J Virol 84(5):2610–2617

    PubMed  CAS  Google Scholar 

  69. John M, Heckerman D, James I, Park LP, Carlson JM, Chopra A, Gaudieri S, Nolan D, Haas DW, Riddler SA, Haubrich R, Mallal S (2010) Adaptive interactions between HLA and HIV-1: highly divergent selection imposed by HLA class I molecules with common supertype motifs. J Immunol 184(8):4368–4377

    PubMed  CAS  Google Scholar 

  70. Alexander J, Bilsel P, del Guercio MF, Marinkovic-Petrovic A, Southwood S, Stewart S, Ishioka G, Kotturi MF, Botten J, Sidney J, Newman M, Sette A (2010) Identification of broad binding class I HLA supertype epitopes to provide universal coverage of influenza A virus. Hum Immunol 71(5):468–474

    PubMed  CAS  Google Scholar 

  71. Rammensee HG, Bachmann J, Stevanovic S (1997) MHC ligands and peptide motifs. Springer, Heidelberg, p 450

    Google Scholar 

  72. Zamvil SS, Mitchell DJ, Moore AC, Kitamura K, Steinman L, Rothbard JB (1986) T-cell epitope of the autoantigen myelin basic protein that induces encephalomyelitis. Nature 324(6094):258–260

    PubMed  CAS  Google Scholar 

  73. Engelhard VH, Altrich-Vanlith M, Ostankovitch M, Zarling AL (2006) Post-translational modifications of naturally processed MHC-binding epitopes. Curr Opin Immunol 18(1):92–97

    PubMed  CAS  Google Scholar 

  74. Haurum JS, Høier IB, Arsequell G, Neisig A, Valencia G, Zeuthen J, Neefjes J, Elliott T (1999) Presentation of cytosolic glycosylated peptides by human class I major histocompatibility complex molecules in vivo. J Exp Med 190(1):145–150

    PubMed  CAS  Google Scholar 

  75. Zarling AL, Ficarro SB, White FM, Shabanowitz J, Hunt DF, Engelhard VH (2000) Phosphorylated peptides are naturally processed and presented by major histocompatibility complex class I molecules in vivo. J Exp Med 192(12):1755–1762

    PubMed  CAS  Google Scholar 

  76. Skipper JC, Hendrickson RC, Gulden PH, Brichard V, Van Pel A, Chen Y, Shabanowitz J, Wolfel T, Slingluff CL Jr, Boon T, Hunt DF, Engelhard VH (1996) An HLA-A2-restricted tyrosinase antigen on melanoma cells results from posttranslational modification and suggests a novel pathway for processing of membrane proteins. J Exp Med 183(2):527–534

    PubMed  CAS  Google Scholar 

  77. Yagüe J, Vázquez J, López de Castro JA (2000) A post-translational modification of nuclear proteins, N(G), N(G)-dimethyl-Arg, found in a natural HLA class I peptide ligand. Protein Sci 9(11):2210–2217

    PubMed  Google Scholar 

  78. Meadows L, Wang W, den Haan JM, Blokland E, Reinhardus C, Drijfhout JW, Shabanowitz J, Pierce R, Agulnik AI, Bishop CE, Hunt DF, Goulmy E, Engelhard VH (1997) The HLA-A*0201-restricted H-Y antigen contains a posttranslationally modified cysteine that significantly affects T cell recognition. Immunity 6(3):273–281

    PubMed  CAS  Google Scholar 

  79. Xu Y, Gendler SJ, Franco A (2004) Designer glycopeptides for cytotoxic T cell-based elimination of carcinomas. J Exp Med 199(5):707–716

    PubMed  CAS  Google Scholar 

  80. Gerard C (1990) Purification of glycoproteins. Methods Enzymol 182:529–539

    PubMed  CAS  Google Scholar 

  81. Calvano CD, Zambonin CG, Jensen ON (2008) Assessment of lectin and HILIC based enrichment protocols for characterization of serum glycoproteins by mass spectrometry. J Proteomics 71(3):304–317

    PubMed  CAS  Google Scholar 

  82. Neville DC, Rozanas CR, Price EM, Gruis DB, Verkman AS, Townsend RR (1997) Evidence for phosphorylation of serine 753 in CFTR using a novel metal-ion affinity resin and matrix-assisted laser desorption mass spectrometry. Protein Sci 6(11):2436–2445

    PubMed  CAS  Google Scholar 

  83. Dunn JD, Reid GE, anb Bruening ML (2010) Techniques for phosphopeptide enrichment prior to analysis by mass spectrometry. Mass Spectrom Rev 29(1):29–54

    PubMed  CAS  Google Scholar 

  84. Hudrisier D, Riond J, Mazarguil H, Oldstone MB, Gairin JE (1999) Genetically encoded and post-translationally modified forms of a major histocompatibility complex class I-restricted antigen bearing a glycosylation motif are independently processed and co-presented to cytotoxic T lymphocytes. J Biol Chem 274(51):36274–36280

    PubMed  CAS  Google Scholar 

  85. Mosse CA, Hsu W, Engelhard VH (2001) Tyrosinase degradation via two pathways during reverse translocation to the cytosol. Biochem Biophys Res Commun 285(2):313–319

    PubMed  CAS  Google Scholar 

  86. Altrich-VanLith ML, Ostankovitch M, Polefrone JM, Mosse CA, Shabanowitz J, Hunt DF, Engelhard VH (2006) Processing of a class I-restricted epitope from tyrosinase requires peptide N-glycanase and the cooperative action of endoplasmic reticulum aminopeptidase 1 and cytosolic proteases. J Immunol 177(8):5440–5450

    PubMed  CAS  Google Scholar 

  87. Mohammed F, Cobbold M, Zarling AL, Salim M, Barrett-Wilt GA, Shabanowitz J, Hunt DF, Engelhard VH, Willcox BE (2008) Phosphorylation-dependent interaction between antigenic peptides and MHC class I: a molecular basis for the presentation of transformed self. Nat Immunol 9(11):1236–1243

    PubMed  CAS  Google Scholar 

  88. Zarling AL, Polefrone JM, Evans AM, Mikesh LM, Shabanowitz J, Lewis ST, Engelhard VH, Hunt DF (2006) Identification of class I MHC-associated phosphopeptides as targets for cancer immunotherapy. Proc Natl Acad Sci USA 103(40):14889–14894

    PubMed  CAS  Google Scholar 

  89. Meyer VS, Drews O, Günder M, Hennenlotter J, Rammensee HG, Stevanović S (2009) Identification of natural MHC class II presented phosphopeptides and tumor-derived MHC class I phospholigands. J Proteome Res 8(7):3666–3674

    PubMed  CAS  Google Scholar 

  90. Andersen MH, Bonfill JE, Neisig A, Arsequell G, Sondergaard I, Valencia G, Neefjes J, Zeuthen J, Elliott T, Haurum JS (1999) Phosphorylated peptides can be transported by TAP molecules, presented by class I MHC molecules, and recognized by phosphopeptide-specific CTL. J Immunol 163(7):3812–3818

    PubMed  CAS  Google Scholar 

  91. Dzhambazov B, Holmdahl M, Yamada H, Lu S, Vestberg M, Holm B, Johnell O, Kihlberg J, Holmdahl R (2005) The major T cell epitope on type II collagen is glycosylated in normal cartilage but modified by arthritis in both rats and humans. Eur J Immunol 35(2):357–366

    PubMed  CAS  Google Scholar 

  92. Hanada K, Yewdell JW, Yang JC (2004) Immune recognition of a human renal cancer antigen through post-translational protein splicing. Nature 427(6971):252–256

    PubMed  CAS  Google Scholar 

  93. Vigneron N, Stroobant V, Chapiro J, Ooms A, Degiovanni G, Morel S, Van der Bruggen P, Boon T, Van den Eynde BJ (2004) An antigenic peptide produced by peptide splicing in the proteasome. Science 304(5670):587–590

    PubMed  CAS  Google Scholar 

  94. Dalet A, Vigneron N, Stroobant V, Hanada K, Van den Eynde BJ (2010) Splicing of distant peptide fragments occurs in the proteasome by transpeptidation and produces the spliced antigenic peptide derived from fibroblast growth factor-5. J Immunol 184(6):3016–3024

    PubMed  CAS  Google Scholar 

  95. Warren EH, Vigneron NJ, Gavin MA, Coulie PG, Stroobant V, Dalet A, Tykodi SS, Xuereb SM, Mito JK, Riddell SR, Van den Eynde BJ (2006) An antigen produced by splicing of noncontiguous peptides in the reverse order. Science 313(5792):1444–1447

    PubMed  CAS  Google Scholar 

  96. Hickman HD, Luis AD, Buchli R, Few SR, Sathiamurthy M, VanGundy RS, Giberson CF, Hildebrand WH (2004) Toward a definition of self: proteomic evaluation of the class I peptide repertoire. J Immunol 172(5):2944–2952

    PubMed  CAS  Google Scholar 

  97. Yewdell JW, Nicchitta CV (2006) The DRiP hypothesis decennial: support, controversy, refinement and extension. Trends Immunol 27(8):368–373

    PubMed  CAS  Google Scholar 

  98. Yewdell JW, Antón LC, Bennink JR (1996) Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules? J Immunol 157(5):1823–1826

    PubMed  CAS  Google Scholar 

  99. Milner E, Barnea E, Beer I, Admon A (2006) The turnover kinetics of major histocompatibility complex peptides of human cancer cells. Mol Cell Proteomics 5(2):357–365

    PubMed  CAS  Google Scholar 

  100. Weinzierl AO, Lemmel C, Schoor O, Müller M, Krüger T, Wernet D, Hennenlotter J, Stenzl A, Klingel K, Rammensee HG, Stevanović S (2007) Distorted relation between mRNA copy number and corresponding major histocompatibility complex ligand density on the cell surface. Mol Cell Proteomics 6(1):102–113

    PubMed  CAS  Google Scholar 

  101. Fortier MH, Caron E, Hardy MP, Voisin G, Lemieux S, Perreault C, Thibault P (2008) The MHC class I peptide repertoire is molded by the transcriptome. J Exp Med 205(3):595–610

    PubMed  CAS  Google Scholar 

  102. Juncker AS, Larsen MV, Weinhold N, Nielsen M, Brunak S, Lund O (2009) Systematic characterisation of cellular localisation and expression profiles of proteins containing MHC ligands. PLoS One 4(10):e7448

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Stevanović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mester, G., Hoffmann, V. & Stevanović, S. Insights into MHC class I antigen processing gained from large-scale analysis of class I ligands. Cell. Mol. Life Sci. 68, 1521–1532 (2011). https://doi.org/10.1007/s00018-011-0659-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0659-9

Keywords

Navigation