Skip to main content
Log in

Evidence that prokineticin receptor 2 exists as a dimer in vivo

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

An Erratum to this article was published on 03 June 2011

Abstract

Prokineticins are proteins that regulate diverse biological processes including gastrointestinal motility, angiogenesis, circadian rhythm, and innate immune response. Prokineticins bind two closed related G-protein coupled receptors (GPCRs), PKR1 and PKR2. In general, these receptors act as molecular switches to relay activation to heterotrimeric G-proteins and a growing body of evidence points to the fact that GPCRs exist as homo- or heterodimers. We show here by Western-blot analysis that PKR2 has a dimeric structure in neutrophils. By heterologous expression of PKR2 in Saccharomyces cerevisiae, we examined the mechanisms of intermolecular interaction of PKR2 dimerization. The potential involvement of three types of mechanisms was investigated: coiled-coil, disulfide bridges, and hydrophobic interactions between transmembrane domains. Characterization of differently deleted or site-directed PKR2 mutants suggests that dimerization proceeds through interactions between transmembrane domains. We demonstrate that co-expressing binding-deficient and signaling-deficient forms of PKR2 can re-establish receptor functionality, possibly through a domain-swapping mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

GPCR:

G-protein coupled receptor

TMD:

Transmembrane domain

PKR:

Prokineticin receptor

References

  1. Bockaert J, Pin JP (1999) Molecular tinkering of G-coupled receptors: an evolutionary success. EMBO J 18:1723–1729

    Article  PubMed  CAS  Google Scholar 

  2. Rosenbaum DM, Rasmussen SGF, Kobilka BK (2009) The structure and function of G-protein-coupled receptors. Nature 459:356–363

    Article  PubMed  CAS  Google Scholar 

  3. Maggio R, Innamorati G, Parenti M (2007) G protein-coupled receptor oligomerization provides the framework for signal discrimination. J Neurochem 103:1741–1752

    Article  PubMed  CAS  Google Scholar 

  4. Breitwieser GE (2004) G protein-coupled receptor oligomerization: implications for G protein activation and cell signaling. Circ Res 94:17–27

    Article  PubMed  CAS  Google Scholar 

  5. Hansen JL, Sheikh SP (2004) Functional consequences of 7TM receptor dimerization. Eur J Pharm Sci 23:301–317

    Article  PubMed  CAS  Google Scholar 

  6. Terrilon S, Bouvier M (2004) Roles of G-protein-coupled receptor dimerization. EMBO Rep 5:30–34

    Article  Google Scholar 

  7. Milligan G (2009) G protein-coupled receptor hetero-dimerization: contribution to pharmacology and function. Br J Pharmacol 158:5–14

    Article  PubMed  CAS  Google Scholar 

  8. Mollay C, Wechselberger C, Mignogna G, Negri L, Melchiorri P, Barra D, Kreil G (1999) Bv8, a small protein from frog skin and its homologue from snake venom induce hyperalgesia in rat. Eur J Pharmacol 347:189–196

    Article  Google Scholar 

  9. Li M, Bullock CM, Knauer DJ, Ehlert FJ, Zhou QY (2001) Identification of two prokineticin cDNAs: recombinant proteins potently contract gastrointestinal smooth muscle. Mol Pharmacol 59:692–698

    PubMed  CAS  Google Scholar 

  10. Kaser A, Winklmayr M, Lepperdinger G, Kreil G (2003) The AVIT protein family. Secreted cysteine-rich vertebrate proteins with diverse functions. EMBO Rep 4:469–473

    Article  PubMed  CAS  Google Scholar 

  11. Negri L, Lattanzi R, Giannini E, Melchiorri P (2007) Bv8/prokineticin proteins and their receptors. Life Sci 81:1103–1116

    Article  PubMed  CAS  Google Scholar 

  12. Ngan ES, Tam PK (2008) Prokineticin-signaling pathway. Int J Biochem Cell Biol 40:1679–1684

    Article  PubMed  CAS  Google Scholar 

  13. Monnier J, Samson M (2008) Cytokine properties of prokineticins. FEBS J 275:4014–4021

    Article  PubMed  CAS  Google Scholar 

  14. LeCouter J, Zlot C, Tejada M, Peale F, Ferrara N (2004) Bv8 and endocrine gland-derived vascular endothelial growth factor stimulate hematopoiesis and hematopoietic cell mobilization. Proc Natl Acad Sci USA 101:16813–16818

    Article  PubMed  CAS  Google Scholar 

  15. Dorsch M, Qiu Y, Soler D, Frank N, Duong T, Goodearl A, O’Neil S, Lora J, Fraser CC (2005) PK1/EG-VEGF induces monocyte differentiation and activation. J Leukocyte Biol 78:426–434

    Article  PubMed  CAS  Google Scholar 

  16. Martucci C, Franchi S, Giannini E, Tian H, Melchiorri P, Negri L, Sacerdote P (2006) Bv8, the amphibian homologue of the mammalian prokineticins, induces a proinflammatory phenotype of mouse macrophages. Br J Pharmacol 147:225–234

    Article  PubMed  CAS  Google Scholar 

  17. Zhong C, Qu X, Tan M, Meng YG, Ferrara N (2009) Characterization and regulation of Bv8 in human blood cells. Clin Cancer Res 15:2675–2684

    Article  PubMed  CAS  Google Scholar 

  18. Soga T, Matsumoto S, Oda T, Saito T, Hiyama H, Takasaki J, Kamohara M, Ohishi T, Matsushime H, Furuichi K (2002) Molecular cloning and characterization of prokineticin receptors. Biochim Biophys Acta 1579:173–179

    PubMed  CAS  Google Scholar 

  19. Masuda Y, Takatsu Y, Terao Y, Kumano S, Ishibashi Y, Suenaga M, Abe M, Fukusumi S, Watanabe T, Shintani Y, Yamada T, Hinuma S, Inatomi N, Ohtaki T, Onda H, Fujino M (2002) Isolation and identification of EG-VEGF/prokineticins as cognate ligands for two orphan G protein-coupled receptors. Biochem Biophys Res Commun 293:396–402

    Article  PubMed  CAS  Google Scholar 

  20. Lin DC, Bullock CM, Ehlert FJ, Chen JL, Tian H, Zhou QY (2002) Identification and molecular characterization of two closely related G protein-coupled receptors activated by prokineticins/EG-VEGF. J Biol Chem 277:19276–19280

    Article  PubMed  CAS  Google Scholar 

  21. Abreu AP, Trarbach EB, de Castro M, Frade Costa EM, Versiani B, Matias Baptista MT, Garmes HM, Mendonca BB, Latronico AC (2008) Loss-of-function mutations in the genes encoding prokineticin-2 or prokineticin receptor-2 cause autosomal recessive Kallmann syndrome. J Clin Endocrinol Metab 93:4113–4118

    Article  PubMed  CAS  Google Scholar 

  22. Minic J, Sautel M, Salesse R, Pajot-Augy E (2005) Yeast system as a screening tool for pharmacological assessment of G protein coupled receptors. Curr Med Chem 12:961–969

    Article  PubMed  CAS  Google Scholar 

  23. Miele R, Lattanzi R, Bonaccorsi di Patti MC, Paiardini A, Negri L, Barra D (2010) Expression of Bv8 in Pichia pastoris to identify structural features for receptor binding. Protein Expr Purif 73:10–14

    Article  PubMed  CAS  Google Scholar 

  24. Ausubel FM, Brent R, Kingston R, Moore D, Seidman J, Smith JA (1994) Editors, current protocols in molecular biology. Wiley, New York

    Google Scholar 

  25. Koyama Y, Kiyo-oka M, Osakada M, Horiguchi N, Shintani N, Ago Y, Kakuda M, Baba A, Matsuda T (2006) Expression of prokineticin receptors in mouse cultured astrocytes and involvement in cell proliferation. Brain Res 1112:65–69

    Article  PubMed  CAS  Google Scholar 

  26. Careaga CL, Falke JJ (1992) Thermal motions of surface alpha-helices in the D-galactose chemosensory receptor. Detection by disulfide trapping. J Mol Biol 226:1219–1235

    Article  PubMed  CAS  Google Scholar 

  27. Klein C, Paul JI, Sauve K, Schmidt MM, Arcangeli L, Ransom J, Trueheart J, Manfredi JP, Broach JR, Murphy AJ (1998) Identification of surrogate agonists for the human FPRL-1 receptor by autocrine selection in yeast. Nat Biotechnol 16:1334–1337

    Article  PubMed  CAS  Google Scholar 

  28. Erlenbach I, Kostenis E, Schmidt C, Hamdan FF, Pausch MH, Wess J (2001) Functional expression of M(1), M(3) and M(5) muscarinic acetylcholine receptors in yeast. J Neurochem 77:1327–1337

    Article  PubMed  CAS  Google Scholar 

  29. Kobilka BK, Kobilka TS, Daniel K, Regan JW, Caron MG, Lefkowitz RJ (1988) Chimeric α2-, β2-adrenergic receptors: delineation of domains involved in effector coupling and ligand binding specificity. Science 240:1310

    Article  PubMed  CAS  Google Scholar 

  30. Maggio R, Vogel Z, Wess J (1993) Reconstitution of functional muscarinic receptors by co-expression of amino- and carboxyl-terminal receptor fragments. FEBS Lett 319:195–200

    Article  PubMed  CAS  Google Scholar 

  31. Schoneberg T, Yun J, Wenkert D, Wess J (1996) Functional rescue of mutant V2 vasopressin receptors causing nephrogenic diabetes insipidus by a co-expressed receptor polypeptide. EMBO J 15:1283–1291

    PubMed  CAS  Google Scholar 

  32. Scarselli M, Armogida M, Chiacchio S, DeMontis MG, Colzi A, Corsini GU, Maggio R (2000) Reconstitution of functional dopamine D(2s) receptor by co-expression of amino- and carboxyl-terminal receptor fragments. Eur J Pharmacol 397:291–296

    Article  PubMed  CAS  Google Scholar 

  33. Maggio R, Barbier P, Colelli A, Salvadori F, Demontis MG, Corsini GU (1999) G protein-linked receptors: pharmacological evidence for the formation of heterodimers. J Pharmacol Exp Ther 291:251–257

    PubMed  CAS  Google Scholar 

  34. Kroeger KM, Pfleger KD, Eidne KA (2003) G-protein coupled receptor oligomerization in neuroendocrine pathways. Front Neuroendocrinol 24:254–278

    Article  PubMed  CAS  Google Scholar 

  35. Lee C, Ji IJ, Ji TH (2002) Use of defined-function mutants to access receptor-receptor interactions. Methods 27:318–323

    Article  PubMed  CAS  Google Scholar 

  36. Gouldson PR, Higgs C, Smith RE, Dean MK, Gkoutos GV, Reynolds CA (2000) Dimerization and domain swapping in G-protein-coupled receptors: a computational study. Neuropsychopharmacology 23:S60–S77

    Article  PubMed  CAS  Google Scholar 

  37. Monnier C, Dodé C, Fabre L, Teixeira L, Labesse G, Pin JP, Hardelin JP, Rondard P (2009) PROKR2 missense mutations associated with Kallmann syndrome impair receptor signalling activity. Hum Mol Genet 18:75–81

    Article  PubMed  CAS  Google Scholar 

  38. Panetta R, Greenwood MT (2008) Physiological relevance of GPCR oligomerization and its impact on drug discovery. Drug Discov Today 13:1059–1066

    Article  PubMed  CAS  Google Scholar 

  39. Ladds G, Goddard A, Davey J (2005) Functional analysis of heterologous GPCR signalling pathways in yeast. Trends Biotechnol 23:367–373

    Article  PubMed  CAS  Google Scholar 

  40. Floyd DH, Geva A, Bruinsma SP, Overton MC, Blumer KJ, Baranski TJ (2003) C5a receptor oligomerization. II. Fluorescence resonance energy transfer studies of a human G protein-coupled receptor expressed in yeast. J Biol Chem 278:35354–35361

    Article  PubMed  CAS  Google Scholar 

  41. Cheng MY, Bittman EL, Hattar S, Zhou QY (2005) Regulation of prokineticin 2 expression by light and the circadian clock. BMC Neurosci 6:17

    Article  PubMed  CAS  Google Scholar 

  42. Shojaei F, Wu X, Zhong C, Yu L, Liang XH, Yao J, Blanchard D, Bais C, Peale FV, van Bruggen N, Ho C, Ross J, Tan M, Carano RA, Meng YG, Ferrara N (2007) Bv8 regulates myeloid cell-dependent tumor angiogenesis. Nature 450:825–831

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Addison D. Ault, Princeton University (USA), for providing the Cy12946 yeast strain and plasmid Cp1021. This work was supported in part by grants from the University of Rome La Sapienza.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rossella Miele.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00018-011-0741-3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marsango, S., Bonaccorsi di Patti, M.C., Barra, D. et al. Evidence that prokineticin receptor 2 exists as a dimer in vivo. Cell. Mol. Life Sci. 68, 2919–2929 (2011). https://doi.org/10.1007/s00018-010-0601-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0601-6

Keywords

Navigation