Skip to main content

Advertisement

Log in

Using human pluripotent stem cells to untangle neurodegenerative disease mechanisms

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Human pluripotent stem cells, including embryonic (hES) and induced pluripotent stem cells (hiPS), retain the ability to self-renew indefinitely, while maintaining the capacity to differentiate into all cell types of the nervous system. While human pluripotent cell-based therapies are unlikely to arise soon, these cells can currently be used as an inexhaustible source of committed neurons to perform high-throughput screening and safety testing of new candidate drugs. Here, we describe critically the available methods and molecular factors that are used to direct the differentiation of hES or hiPS into specific neurons. In addition, we discuss how the availability of patient-specific hiPS offers a unique opportunity to model inheritable neurodegenerative diseases and untangle their pathological mechanisms, or to validate drugs that would prevent the onset or the progression of these neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dragunow M (2008) The adult human brain in preclinical drug development. Nat Rev Drug Discov 7:659–666

    CAS  PubMed  Google Scholar 

  2. Draper JS, Moore HD, Ruban LN, Gokhale PJ, Andrews PW (2004) Culture and characterization of human embryonic stem cells. Stem Cells Dev 13:325–336

    CAS  PubMed  Google Scholar 

  3. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451:141–146

    CAS  PubMed  Google Scholar 

  4. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    CAS  PubMed  Google Scholar 

  5. Dottori M, Pera MF (2008) Neural differentiation of human embryonic stem cells. Methods Mol Biol 438:19–30

    CAS  PubMed  Google Scholar 

  6. Richards M, Tan S, Fong CY, Biswas A, Chan WK, Bongso A (2003) Comparative evaluation of various human feeders for prolonged undifferentiated growth of human embryonic stem cells. Stem Cells 21:546–556

    CAS  PubMed  Google Scholar 

  7. Xu C, Rosler E, Jiang J, Lebkowski JS, Gold JD, O’Sullivan C, Delavan-Boorsma K, Mok M, Bronstein A, Carpenter MK (2005) Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells 23:315–323

    CAS  PubMed  Google Scholar 

  8. Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, Carpenter MK (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 19:971–974

    CAS  PubMed  Google Scholar 

  9. Klimanskaya I, Chung Y, Meisner L, Johnson J, West MD, Lanza R (2005) Human embryonic stem cells derived without feeder cells. Lancet 365:1636–1641

    CAS  PubMed  Google Scholar 

  10. Henderson JK, Draper JS, Baillie HS, Fishel S, Thomson JA, Moore H, Andrews PW (2002) Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens. Stem Cells 20:329–337

    CAS  PubMed  Google Scholar 

  11. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18:399–404

    CAS  PubMed  Google Scholar 

  12. Laslett AL, Filipczyk AA, Pera MF (2003) Characterization and culture of human embryonic stem cells. Trends Cardiovasc Med 13:295–301

    CAS  PubMed  Google Scholar 

  13. Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A (2003) Functional expression cloning of nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113:643–655

    CAS  PubMed  Google Scholar 

  14. Hay DC, Sutherland L, Clark J, Burdon T (2004) Oct-4 knockdown induces similar patterns of endoderm and trophoblast differentiation markers in human and mouse embryonic stem cells. Stem Cells 22:225–235

    CAS  PubMed  Google Scholar 

  15. Zaehres H, Lensch MW, Daheron L, Stewart SA, Itskovitz-Eldor J, Daley GQ (2005) High-efficiency RNA interference in human embryonic stem cells. Stem Cells 23:299–305

    CAS  PubMed  Google Scholar 

  16. Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631–642

    CAS  PubMed  Google Scholar 

  17. Hyslop L, Stojkovic M, Armstrong L, Walter T, Stojkovic P, Przyborski S, Herbert M, Murdoch A, Strachan T, Lako M (2005) Downregulation of NANOG induces differentiation of human embryonic stem cells to extraembryonic lineages. Stem Cells 23:1035–1043

    CAS  PubMed  Google Scholar 

  18. Darr H, Benvenisty N (2006) Factors involved in self-renewal and pluripotency of embryonic stem cells. Handb Exp Pharmacol: 1–19.

  19. Boyer LA, Mathur D, Jaenisch R (2006) Molecular control of pluripotency. Curr Opin Genet Dev 16:455–462

    CAS  PubMed  Google Scholar 

  20. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Scholer H, Smith A (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor oct4. Cell 95:379–391

    CAS  PubMed  Google Scholar 

  21. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–956

    CAS  PubMed  Google Scholar 

  22. Kuroda T, Tada M, Kubota H, Kimura H, Hatano SY, Suemori H, Nakatsuji N, Tada T (2005) Octamer and sox elements are required for transcriptional cis regulation of nanog gene expression. Mol Cell Biol 25:2475–2485

    CAS  PubMed  Google Scholar 

  23. Rodda DJ, Chew JL, Lim LH, Loh YH, Wang B, Ng HH, Robson P (2005) Transcriptional regulation of nanog by oct4 and sox2. J Biol Chem 280:24731–24737

    CAS  PubMed  Google Scholar 

  24. Lowry WE, Richter L, Yachechko R, Pyle AD, Tchieu J, Sridharan R, Clark AT, Plath K (2008) Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci USA 105:2883–2888

    CAS  PubMed  Google Scholar 

  25. Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S (2008) Generation of induced pluripotent stem cells without myc from mouse and human fibroblasts. Nat Biotechnol 26:101–106

    CAS  PubMed  Google Scholar 

  26. Blelloch R, Venere M, Yen J, Ramalho-Santos M (2007) Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell 1:245–247

    CAS  PubMed  Google Scholar 

  27. Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S, Muhlestein W, Melton DA (2008) Induction of pluripotent stem cells from primary human fibroblasts with only oct4 and sox2. Nat Biotechnol 26:1269–1275

    CAS  PubMed  Google Scholar 

  28. Amabile G, Meissner A (2009) Induced pluripotent stem cells: current progress and potential for regenerative medicine. Trends Mol Med 15:59–68

    CAS  PubMed  Google Scholar 

  29. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    CAS  PubMed  Google Scholar 

  30. Ebert AD, Yu J, Rose FF Jr, Mattis VB, Lorson CL, Thomson JA, Svendsen CN (2009) Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457:277–280

    CAS  PubMed  Google Scholar 

  31. Heng JC, Feng B, Han J, Jiang J, Kraus P, Ng JH, Orlov YL, Huss M, Yang L, Lufkin T, Lim B, Ng HH (2010) The nuclear receptor nr5a2 can replace oct4 in the reprogramming of murine somatic cells to pluripotent cells. Cell Stem Cell 6:167–174

    Google Scholar 

  32. Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen AE, Melton DA (2008) Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26:795–797

    CAS  PubMed  Google Scholar 

  33. Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P, Bernstein BE, Jaenisch R, Lander ES, Meissner A (2008) Dissecting direct reprogramming through integrative genomic analysis. Nature 454:49–55

    CAS  PubMed  Google Scholar 

  34. Lin T, Ambasudhan R, Yuan X, Li W, Hilcove S, Abujarour R, Lin X, Hahm HS, Hao E, Hayek A, Ding S (2009) A chemical platform for improved induction of human iPSCs. Nat Methods 6:805–808

    CAS  PubMed  Google Scholar 

  35. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    CAS  PubMed  Google Scholar 

  36. Richards M, Fong CY, Chan WK, Wong PC, Bongso A (2002) Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol 20:933–936

    CAS  PubMed  Google Scholar 

  37. Amit M, Margulets V, Segev H, Shariki K, Laevsky I, Coleman R, Itskovitz-Eldor J (2003) Human feeder layers for human embryonic stem cells. Biol Reprod 68:2150–2156

    CAS  PubMed  Google Scholar 

  38. Sjogren-Jansson E, Zetterstrom M, Moya K, Lindqvist J, Strehl R, Eriksson PS (2005) Large-scale propagation of four undifferentiated human embryonic stem cell lines in a feeder-free culture system. Dev Dyn 233:1304–1314

    PubMed  Google Scholar 

  39. Yao S, Chen S, Clark J, Hao E, Beattie GM, Hayek A, Ding S (2006) Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc Natl Acad Sci USA 103:6907–6912

    CAS  PubMed  Google Scholar 

  40. Hoffman LM, Carpenter MK (2005) Characterization and culture of human embryonic stem cells. Nat Biotechnol 23:699–708

    CAS  PubMed  Google Scholar 

  41. Peiffer I, Barbet R, Zhou YP, Li ML, Monier MN, Hatzfeld A, Hatzfeld JA (2008) Use of xenofree matrices and molecularly-defined media to control human embryonic stem cell pluripotency: effect of low physiological TGF-beta concentrations. Stem Cells Dev 17:519–533

    CAS  PubMed  Google Scholar 

  42. Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, Crandall LJ, Daigh CA, Conard KR, Piekarczyk MS, Llanas RA, Thomson JA (2006) Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 24:185–187

    CAS  PubMed  Google Scholar 

  43. Beattie GM, Lopez AD, Bucay N, Hinton A, Firpo MT, King CC, Hayek A (2005) Activin a maintains pluripotency of human embryonic stem cells in the absence of feeder layers. Stem Cells 23:489–495

    CAS  PubMed  Google Scholar 

  44. Furue MK, Na J, Jackson JP, Okamoto T, Jones M, Baker D, Hata R, Moore HD, Sato JD, Andrews PW (2008) Heparin promotes the growth of human embryonic stem cells in a defined serum-free medium. Proc Natl Acad Sci USA 105:13409–13414

    CAS  PubMed  Google Scholar 

  45. Amit M, Shariki C, Margulets V, Itskovitz-Eldor J (2004) Feeder layer- and serum-free culture of human embryonic stem cells. Biol Reprod 70:837–845

    CAS  PubMed  Google Scholar 

  46. Hakala H, Rajala K, Ojala M, Panula S, Areva S, Kellomaki M, Suuronen R, Skottman H (2009) Comparison of biomaterials and extracellular matrices as a culture platform for multiple, independently derived human embryonic stem cell lines. Tissue Eng Part A 15:1775–1785

    CAS  PubMed  Google Scholar 

  47. Li YJ, Chung EH, Rodriguez RT, Firpo MT, Healy KE (2006) Hydrogels as artificial matrices for human embryonic stem cell self-renewal. J Biomed Mater Res A 79:1–5

    PubMed  Google Scholar 

  48. Gerecht S, Burdick JA, Ferreira LS, Townsend SA, Langer R, Vunjak-Novakovic G (2007) Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci USA 104:11298–11303

    CAS  PubMed  Google Scholar 

  49. Siti-Ismail N, Bishop AE, Polak JM, Mantalaris A (2008) The benefit of human embryonic stem cell encapsulation for prolonged feeder-free maintenance. Biomaterials 29:3946–3952

    CAS  PubMed  Google Scholar 

  50. Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA, Itskovitz-Eldor J, Thomson JA (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 227:271–278

    CAS  PubMed  Google Scholar 

  51. Sato N, Sanjuan IM, Heke M, Uchida M, Naef F, Brivanlou AH (2003) Molecular signature of human embryonic stem cells and its comparison with the mouse. Dev Biol 260:404–413

    CAS  PubMed  Google Scholar 

  52. Dravid G, Ye Z, Hammond H, Chen G, Pyle A, Donovan P, Yu X, Cheng L (2005) Defining the role of wnt/beta-catenin signaling in the survival, proliferation, and self-renewal of human embryonic stem cells. Stem Cells 23:1489–1501

    CAS  PubMed  Google Scholar 

  53. Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10:55–63

    CAS  PubMed  Google Scholar 

  54. Cai L, Ye Z, Zhou BY, Mali P, Zhou C, Cheng L (2007) Promoting human embryonic stem cell renewal or differentiation by modulating Wnt signal and culture conditions. Cell Res 17:62–72

    CAS  PubMed  Google Scholar 

  55. Sumi T, Tsuneyoshi N, Nakatsuji N, Suemori H (2008) Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/beta-catenin, Activin/Nodal and BMP signaling. Development 135:2969–2979

    CAS  PubMed  Google Scholar 

  56. Kleber M, Sommer L (2004) Wnt signaling and the regulation of stem cell function. Curr Opin Cell Biol 16:681–687

    CAS  PubMed  Google Scholar 

  57. Greber B, Lehrach H, Adjaye J (2007) Fibroblast growth factor 2 modulates transforming growth factor beta signaling in mouse embryonic fibroblasts and human ESCs (hESCs) to support hESC self-renewal. Stem Cells 25:455–464

    CAS  PubMed  Google Scholar 

  58. Dvorak P, Dvorakova D, Koskova S, Vodinska M, Najvirtova M, Krekac D, Hampl A (2005) Expression and potential role of fibroblast growth factor 2 and its receptors in human embryonic stem cells. Stem Cells 23:1200–1211

    CAS  PubMed  Google Scholar 

  59. Li J, Wang G, Wang C, Zhao Y, Zhang H, Tan Z, Song Z, Ding M, Deng H (2007) Mek/erk signaling contributes to the maintenance of human embryonic stem cell self-renewal. Differentiation 75:299–307

    CAS  PubMed  Google Scholar 

  60. Eiselleova L, Matulka K, Kriz V, Kunova M, Schmidtova Z, Neradil J, Tichy B, Dvorakova D, Pospisilova S, Hampl A, Dvorak P (2009) A complex role for FGF-2 in self-renewal, survival, and adhesion of human embryonic stem cells. Stem Cells 27:1847–1857

    CAS  PubMed  Google Scholar 

  61. Xu RH, Peck RM, Li DS, Feng X, Ludwig T, Thomson JA (2005) Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods 2:185–190

    CAS  PubMed  Google Scholar 

  62. Xiao L, Yuan X, Sharkis SJ (2006) Activin A maintains self-renewal and regulates fibroblast growth factor, wnt, and bone morphogenic protein pathways in human embryonic stem cells. Stem Cells 24:1476–1486

    CAS  PubMed  Google Scholar 

  63. James D, Levine AJ, Besser D, Hemmati-Brivanlou A (2005) TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 132:1273–1282

    CAS  PubMed  Google Scholar 

  64. Wang G, Zhang H, Zhao Y, Li J, Cai J, Wang P, Meng S, Feng J, Miao C, Ding M, Li D, Deng H (2005) Noggin and bFGF cooperate to maintain the pluripotency of human embryonic stem cells in the absence of feeder layers. Biochem Biophys Res Commun 330:934–942

    CAS  PubMed  Google Scholar 

  65. Xu RH, Sampsell-Barron TL, Gu F, Root S, Peck RM, Pan G, Yu J, Antosiewicz-Bourget J, Tian S, Stewart R, Thomson JA (2008) Nanog is a direct target of TGFbeta/activin-mediated smad signaling in human ESCs. Cell Stem Cell 3:196–206

    CAS  PubMed  Google Scholar 

  66. Vallier L, Alexander M, Pedersen RA (2005) Activin/nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci 118:4495–4509

    CAS  PubMed  Google Scholar 

  67. Bendall SC, Stewart MH, Menendez P, George D, Vijayaragavan K, Werbowetski-Ogilvie T, Ramos-Mejia V, Rouleau A, Yang J, Bosse M, Lajoie G, Bhatia M (2007) IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature 448:1015–1021

    CAS  PubMed  Google Scholar 

  68. Gonzalez R, Jennings LL, Knuth M, Orth AP, Klock HE, Ou W, Feuerhelm J, Hull MV, Koesema E, Wang Y, Zhang J, Wu C, Cho CY, Su AI, Batalov S, Chen H, Johnson K, Laffitte B, Nguyen DG, Snyder EY, Schultz PG, Harris JL, Lesley SA (2010) Screening the mammalian extracellular proteome for regulators of embryonic human stem cell pluripotency. Proc Natl Acad Sci USA 107:3552–3557

    Google Scholar 

  69. Wang L, Schulz TC, Sherrer ES, Dauphin DS, Shin S, Nelson AM, Ware CB, Zhan M, Song CZ, Chen X, Brimble SN, McLean A, Galeano MJ, Uhl EW, D’Amour KA, Chesnut JD, Rao MS, Blau CA, Robins AJ (2007) Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood 110:4111–4119

    CAS  PubMed  Google Scholar 

  70. Armstrong L, Hughes O, Yung S, Hyslop L, Stewart R, Wappler I, Peters H, Walter T, Stojkovic P, Evans J, Stojkovic M, Lako M (2006) The role of PI3K/AKT, MAPK/ERK and NFkappabeta signalling in the maintenance of human embryonic stem cell pluripotency and viability highlighted by transcriptional profiling and functional analysis. Hum Mol Genet 15:1894–1913

    CAS  PubMed  Google Scholar 

  71. Bushati N, Cohen SM (2007) MicroRNA functions. Annu Rev Cell Dev Biol 23:175–205

    CAS  PubMed  Google Scholar 

  72. Navarro A, Monzo M MicroRNAs in human embryonic and cancer stem cells. Yonsei Med J 51:622–632

  73. Judson RL, Babiarz JE, Venere M, Blelloch R (2009) Embryonic stem cell-specific micrornas promote induced pluripotency. Nat Biotechnol 27:459–461

    CAS  PubMed  Google Scholar 

  74. Lakshmipathy U, Love B, Goff LA, Jornsten R, Graichen R, Hart RP, Chesnut JD (2007) MicroRNA expression pattern of undifferentiated and differentiated human embryonic stem cells. Stem Cells Dev 16:1003–1016

    CAS  PubMed  Google Scholar 

  75. Tsai ZY, Singh S, Yu SL, Kao LP, Chen BZ, Ho BC, Yang PC, Li SS (2010) Identification of micrornas regulated by activin A in human embryonic stem cells. J Cell Biochem 109:93–102

    CAS  PubMed  Google Scholar 

  76. Chen BZ, Yu SL, Singh S, Kao LP, Tsai ZY, Yang PC, Chen BH, Li SS (2010) Identification of microRNAs expressed highly in pancreatic islet-like cell clusters differentiated from human embryonic stem cells. Cell Biol Int (in press)

  77. Kamata M, Liang M, Liu S, Nagaoka Y, Chen IS (2010) Live cell monitoring of hiPSC generation and differentiation using differential expression of endogenous microRNAs. PLoS One 5:e11834

    PubMed  Google Scholar 

  78. Wilson KD, Venkatasubrahmanyam S, Jia F, Sun N, Butte AJ, Wu JC (2009) MicroRNA profiling of human-induced pluripotent stem cells. Stem Cells Dev 18:749–758

    CAS  PubMed  Google Scholar 

  79. Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS (2009) MicroRNA-145 regulates oct4, sox2, and klf4 and represses pluripotency in human embryonic stem cells. Cell 137:647–658

    CAS  PubMed  Google Scholar 

  80. Frisch SM, Screaton RA (2001) Anoikis mechanisms. Curr Opin Cell Biol 13:555–562

    CAS  PubMed  Google Scholar 

  81. Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Muguruma K, Sasai Y (2007) A rock inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25:681–686

    CAS  PubMed  Google Scholar 

  82. Wang X, Lin G, Martins-Taylor K, Zeng H, Xu RH (2009) Inhibition of caspase-mediated anoikis is critical for basic fibroblast growth factor-sustained culture of human pluripotent stem cells. J Biol Chem 284:34054–34064

    CAS  PubMed  Google Scholar 

  83. Pyle AD, Lock LF, Donovan PJ (2006) Neurotrophins mediate human embryonic stem cell survival. Nat Biotechnol 24:344–350

    CAS  PubMed  Google Scholar 

  84. Elkabetz Y, Panagiotakos G, Al Shamy G, Socci ND, Tabar V, Studer L (2008) Human Es cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev 22:152–165

    CAS  PubMed  Google Scholar 

  85. Zhang SC, Wernig M, Duncan ID, Brustle O, Thomson JA (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19:1129–1133

    CAS  PubMed  Google Scholar 

  86. Elkabetz Y, Studer L (2008) Human ESC-derived neural rosettes and neural stem cell progression. Cold Spring Harb Symp Quant Biol 73:377–387

    CAS  PubMed  Google Scholar 

  87. Reubinoff BE, Itsykson P, Turetsky T, Pera MF, Reinhartz E, Itzik A, Ben-Hur T (2001) Neural progenitors from human embryonic stem cells. Nat Biotechnol 19:1134–1140

    CAS  PubMed  Google Scholar 

  88. Erceg S, Ronaghi M, Stojkovic M (2009) Human embryonic stem cell differentiation toward regional specific neural precursors. Stem Cells 27:78–87

    CAS  PubMed  Google Scholar 

  89. Carpenter MK, Inokuma MS, Denham J, Mujtaba T, Chiu CP, Rao MS (2001) Enrichment of neurons and neural precursors from human embryonic stem cells. Exp Neurol 172:383–397

    CAS  PubMed  Google Scholar 

  90. Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton DA, Benvenisty N (2000) Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 97:11307–11312

    CAS  PubMed  Google Scholar 

  91. Joannides AJ, Fiore-Heriche C, Battersby AA, Athauda-Arachchi P, Bouhon IA, Williams L, Westmore K, Kemp PJ, Compston A, Allen ND, Chandran S (2007) A scaleable and defined system for generating neural stem cells from human embryonic stem cells. Stem Cells 25:731–737

    CAS  PubMed  Google Scholar 

  92. Itsykson P, Ilouz N, Turetsky T, Goldstein RS, Pera MF, Fishbein I, Segal M, Reubinoff BE (2005) Derivation of neural precursors from human embryonic stem cells in the presence of noggin. Mol Cell Neurosci 30:24–36

    CAS  PubMed  Google Scholar 

  93. Wada T, Honda M, Minami I, Tooi N, Amagai Y, Nakatsuji N, Aiba K (2009) Highly efficient differentiation and enrichment of spinal motor neurons derived from human and monkey embryonic stem cells. PLoS One 4:e6722

    PubMed  Google Scholar 

  94. Kim DS, Lee JS, Leem JW, Huh YJ, Kim JY, Kim HS, Park IH, Daley GQ, Hwang DY, Kim DW (2010) Robust enhancement of neural differentiation from human ES and iPS cells regardless of their innate difference in differentiation propensity. Stem Cell Rev 6:270–281

    CAS  PubMed  Google Scholar 

  95. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of smad signaling. Nat Biotechnol 27:275–280

    CAS  PubMed  Google Scholar 

  96. Park CH, Minn YK, Lee JY, Choi DH, Chang MY, Shim JW, Ko JY, Koh HC, Kang MJ, Kang JS, Rhie DJ, Lee YS, Son H, Moon SY, Kim KS, Lee SH (2005) In vitro and in vivo analyses of human embryonic stem cell-derived dopamine neurons. J Neurochem 92:1265–1276

    CAS  PubMed  Google Scholar 

  97. Zeng X, Cai J, Chen J, Luo Y, You ZB, Fotter E, Wang Y, Harvey B, Miura T, Backman C, Chen GJ, Rao MS, Freed WJ (2004) Dopaminergic differentiation of human embryonic stem cells. Stem Cells 22:925–940

    CAS  PubMed  Google Scholar 

  98. Buytaert-Hoefen KA, Alvarez E, Freed CR (2004) Generation of tyrosine hydroxylase positive neurons from human embryonic stem cells after coculture with cellular substrates and exposure to GDNF. Stem Cells 22:669–674

    CAS  PubMed  Google Scholar 

  99. Perrier AL, Tabar V, Barberi T, Rubio ME, Bruses J, Topf N, Harrison NL, Studer L (2004) Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA 101:12543–12548

    CAS  PubMed  Google Scholar 

  100. Barberi T, Klivenyi P, Calingasan NY, Lee H, Kawamata H, Loonam K, Perrier AL, Bruses J, Rubio ME, Topf N, Tabar V, Harrison NL, Beal MF, Moore MA, Studer L (2003) Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat Biotechnol 21:1200–1207

    CAS  PubMed  Google Scholar 

  101. Hong S, Kang UJ, Isacson O, Kim KS (2008) Neural precursors derived from human embryonic stem cells maintain long-term proliferation without losing the potential to differentiate into all three neural lineages, including dopaminergic neurons. J Neurochem 104:316–324

    CAS  PubMed  Google Scholar 

  102. Ko JY, Lee HS, Park CH, Koh HC, Lee YS, Lee SH (2009) Conditions for tumor-free and dopamine neuron-enriched grafts after transplanting human ES cell-derived neural precursor cells. Mol Ther 17:1761–1770

    CAS  PubMed  Google Scholar 

  103. Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, Nakanishi S, Nishikawa SI, Sasai Y (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28:31–40

    CAS  PubMed  Google Scholar 

  104. Kawasaki H, Suemori H, Mizuseki K, Watanabe K, Urano F, Ichinose H, Haruta M, Takahashi M, Yoshikawa K, Nishikawa S, Nakatsuji N, Sasai Y (2002) Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc Natl Acad Sci USA 99:1580–1585

    CAS  PubMed  Google Scholar 

  105. Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, Soreq H, Benvenisty N (2000) Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 6:88–95

    CAS  PubMed  Google Scholar 

  106. Park S, Lee KS, Lee YJ, Shin HA, Cho HY, Wang KC, Kim YS, Lee HT, Chung KS, Kim EY, Lim J (2004) Generation of dopaminergic neurons in vitro from human embryonic stem cells treated with neurotrophic factors. Neurosci Lett 359:99–103

    CAS  PubMed  Google Scholar 

  107. Schulz TC, Palmarini GM, Noggle SA, Weiler DA, Mitalipova MM, Condie BG (2003) Directed neuronal differentiation of human embryonic stem cells. BMC Neurosci 4:27

    PubMed  Google Scholar 

  108. Koch P, Opitz T, Steinbeck JA, Ladewig J, Brustle O (2009) A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proc Natl Acad Sci USA 106:3225–3230

    CAS  PubMed  Google Scholar 

  109. Preynat-Seauve O, Suter DM, Tirefort D, Turchi L, Virolle T, Chneiweiss H, Foti M, Lobrinus JA, Stoppini L, Feki A, Dubois-Dauphin M, Krause KH (2009) Development of human nervous tissue upon differentiation of embryonic stem cells in three-dimensional culture. Stem Cells 27:509–520

    Google Scholar 

  110. Li XJ, Zhang X, Johnson MA, Wang ZB, Lavaute T, Zhang SC (2009) Coordination of sonic hedgehog and Wnt signaling determines ventral and dorsal telencephalic neuron types from human embryonic stem cells. Development 136:4055–4063

    CAS  PubMed  Google Scholar 

  111. Pankratz MT, Li XJ, Lavaute TM, Lyons EA, Chen X, Zhang SC (2007) Directed neural differentiation of human embryonic stem cells via an obligated primitive anterior stage. Stem Cells 25:1511–1520

    CAS  PubMed  Google Scholar 

  112. Zhang X, Huang CT, Chen J, Pankratz MT, Xi J, Li J, Yang Y, Lavaute T, Li XJ, Ayala M, Bondarenko GI, Du ZW, Jin Y, Golos TG, Zhang SC (2010) Pax6 is a human neuroectoderm cell fate determinant. Cell Stem Cell 7:90–100

    CAS  PubMed  Google Scholar 

  113. Woo SM, Kim J, Han HW, Chae JI, Son MY, Cho S, Chung HM, Han YM, Kang YK (2009) Notch signaling is required for maintaining stem-cell features of neuroprogenitor cells derived from human embryonic stem cells. BMC Neurosci 10:97

    PubMed  Google Scholar 

  114. Erceg S, Lainez S, Ronaghi M, Stojkovic P, Perez-Arago MA, Moreno-Manzano V, Moreno-Palanques R, Planells-Cases R, Stojkovic M (2008) Differentiation of human embryonic stem cells to regional specific neural precursors in chemically defined medium conditions. PLoS One 3:e2122

    PubMed  Google Scholar 

  115. Abeliovich A, Hammond R (2007) Midbrain dopamine neuron differentiation: factors and fates. Dev Biol 304:447–454

    CAS  PubMed  Google Scholar 

  116. Hynes M, Rosenthal A (1999) Specification of dopaminergic and serotonergic neurons in the vertebrate CNS. Curr Opin Neurobiol 9:26–36

    CAS  PubMed  Google Scholar 

  117. Chi CL, Martinez S, Wurst W, Martin GR (2003) The isthmic organizer signal FGF8 is required for cell survival in the prospective midbrain and cerebellum. Development 130:2633–2644

    CAS  PubMed  Google Scholar 

  118. Yan Y, Yang D, Zarnowska ED, Du Z, Werbel B, Valliere C, Pearce RA, Thomson JA, Zhang SC (2005) Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells 23:781–790

    CAS  PubMed  Google Scholar 

  119. Farkas LM, Dunker N, Roussa E, Unsicker K, Krieglstein K (2003) Transforming growth factor-beta(s) are essential for the development of midbrain dopaminergic neurons in vitro and in vivo. J Neurosci 23:5178–5186

    CAS  PubMed  Google Scholar 

  120. Vazin T, Becker KG, Chen J, Spivak CE, Lupica CR, Zhang Y, Worden L, Freed WJ (2009) A novel combination of factors, termed SPIE, which promotes dopaminergic neuron differentiation from human embryonic stem cells. PLoS One 4:e6606

    PubMed  Google Scholar 

  121. Sacchetti P, Sousa KM, Hall AC, Liste I, Steffensen KR, Theofilopoulos S, Parish CL, Hazenberg C, Richter LA, Hovatta O, Gustafsson JA, Arenas E (2009) Liver X receptors and oxysterols promote ventral midbrain neurogenesis in vivo and in human embryonic stem cells. Cell Stem Cell 5:409–419

    CAS  PubMed  Google Scholar 

  122. Nunes I, Tovmasian LT, Silva RM, Burke RE, Goff SP (2003) Pitx3 is required for development of substantia nigra dopaminergic neurons. Proc Natl Acad Sci USA 100:4245–4250

    CAS  PubMed  Google Scholar 

  123. Perrone-Capano C, Di Porzio U (2000) Genetic and epigenetic control of midbrain dopaminergic neuron development. Int J Dev Biol 44:679–687

    CAS  PubMed  Google Scholar 

  124. Haubenberger D, Reinthaler E, Mueller JC, Pirker W, Katzenschlager R, Froehlich R, Bruecke T, Daniel G, Auff E, Zimprich A (2009) Association of transcription factor polymorphisms PITX3 and EN1 with Parkinson’s disease. Neurobiol Aging (in press)

  125. Wallen A, Perlmann T (2003) Transcriptional control of dopamine neuron development. Ann N Y Acad Sci 991:48–60

    CAS  PubMed  Google Scholar 

  126. Martinat C, Bacci JJ, Leete T, Kim J, Vanti WB, Newman AH, Cha JH, Gether U, Wang H, Abeliovich A (2006) Cooperative transcription activation by NURR1 and PITX3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype. Proc Natl Acad Sci USA 103:2874–2879

    CAS  PubMed  Google Scholar 

  127. Cai J, Donaldson A, Yang M, German MS, Enikolopov G, Iacovitti L (2009) The role of Lmx1a in the differentiation of human embryonic stem cells into midbrain dopamine neurons in culture and after transplantation into a Parkinson ’s disease model. Stem Cells 27:220–229

    CAS  PubMed  Google Scholar 

  128. Friling S, Andersson E, Thompson LH, Jonsson ME, Hebsgaard JB, Nanou E, Alekseenko Z, Marklund U, Kjellander S, Volakakis N, Hovatta O, El Manira A, Bjorklund A, Perlmann T, Ericson J (2009) Efficient production of mesencephalic dopamine neurons by Lmx1a expression in embryonic stem cells. Proc Natl Acad Sci USA 106:7613–7618

    CAS  PubMed  Google Scholar 

  129. Roussa E, Wiehle M, Dunker N, Becker-Katins S, Oehlke O, Krieglstein K (2006) Transforming growth factor beta is required for differentiation of mouse mesencephalic progenitors into dopaminergic neurons in vitro and in vivo: ectopic induction in dorsal mesencephalon. Stem Cells 24:2120–2129

    CAS  PubMed  Google Scholar 

  130. Roussa E, Oehlke O, Rahhal B, Heermann S, Heidrich S, Wiehle M, Krieglstein K (2008) Transforming growth factor beta cooperates with persephin for dopaminergic phenotype induction. Stem Cells 26:1683–1694

    CAS  PubMed  Google Scholar 

  131. Flanders KC, Ren RF, Lippa CF (1998) Transforming growth factor-betas in neurodegenerative disease. Prog Neurobiol 54:71–85

    CAS  PubMed  Google Scholar 

  132. Rolletschek A, Chang H, Guan K, Czyz J, Meyer M, Wobus AM (2001) Differentiation of embryonic stem cell-derived dopaminergic neurons is enhanced by survival-promoting factors. Mech Dev 105:93–104

    CAS  PubMed  Google Scholar 

  133. Branton RL, Love RM, Clarke DJ (1998) cAMP included during cell suspension preparation improves survival of dopaminergic neurons in vitro. Neuroreport 9:3223–3227

    CAS  PubMed  Google Scholar 

  134. Hyman C, Hofer M, Barde YA, Juhasz M, Yancopoulos GD, Squinto SP, Lindsay RM (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350:230–232

    CAS  PubMed  Google Scholar 

  135. Baquet ZC, Bickford PC, Jones KR (2005) Brain-derived neurotrophic factor is required for the establishment of the proper number of dopaminergic neurons in the substantia nigra pars compacta. J Neurosci 25:6251–6259

    CAS  PubMed  Google Scholar 

  136. Maciaczyk J, Singec I, Maciaczyk D, Nikkhah G (2008) Combined use of BDNF, ascorbic acid, low oxygen, and prolonged differentiation time generates tyrosine hydroxylase-expressing neurons after long-term in vitro expansion of human fetal midbrain precursor cells. Exp Neurol 213:354–362

    CAS  PubMed  Google Scholar 

  137. Cho MS, Lee YE, Kim JY, Chung S, Cho YH, Kim DS, Kang SM, Lee H, Kim MH, Kim JH, Leem JW, Oh SK, Choi YM, Hwang DY, Chang JW, Kim DW (2008) Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA 105:3392–3397

    CAS  PubMed  Google Scholar 

  138. Jessell TM (2000) Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 1:20–29

    CAS  PubMed  Google Scholar 

  139. Lu QR, Sun T, Zhu Z, Ma N, Garcia M, Stiles CD, Rowitch DH (2002) Common developmental requirement for olig function indicates a motor neuron/oligodendrocyte connection. Cell 109:75–86

    CAS  PubMed  Google Scholar 

  140. Edlund T, Jessell TM (1999) Progression from extrinsic to intrinsic signaling in cell fate specification: a view from the nervous system. Cell 96:211–224

    CAS  PubMed  Google Scholar 

  141. Thaler J, Harrison K, Sharma K, Lettieri K, Kehrl J, Pfaff SL (1999) Active suppression of interneuron programs within developing motor neurons revealed by analysis of homeodomain factor HB9. Neuron 23:675–687

    CAS  PubMed  Google Scholar 

  142. Sharma K, Leonard AE, Lettieri K, Pfaff SL (2000) Genetic and epigenetic mechanisms contribute to motor neuron pathfinding. Nature 406:515–519

    CAS  PubMed  Google Scholar 

  143. Briscoe J, Ericson J (1999) The specification of neuronal identity by graded sonic hedgehog signalling. Semin Cell Dev Biol 10:353–362

    CAS  PubMed  Google Scholar 

  144. Wilson SW, Houart C (2004) Early steps in the development of the forebrain. Dev Cell 6:167–181

    CAS  PubMed  Google Scholar 

  145. Hu BY, Zhang SC (2009) Differentiation of spinal motor neurons from pluripotent human stem cells. Nat Protoc 4:1295–1304

    CAS  PubMed  Google Scholar 

  146. Li XJ, Hu BY, Jones SA, Zhang YS, Lavaute T, Du ZW, Zhang SC (2008) Directed differentiation of ventral spinal progenitors and motor neurons from human embryonic stem cells by small molecules. Stem Cells 26:886–893

    CAS  PubMed  Google Scholar 

  147. Sinha S, Chen JK (2006) Purmorphamine activates the hedgehog pathway by targeting smoothened. Nat Chem Biol 2:29–30

    CAS  PubMed  Google Scholar 

  148. Singh Roy N, Nakano T, Xuing L, Kang J, Nedergaard M, Goldman SA (2005) Enhancer-specified GFP-based FACS purification of human spinal motor neurons from embryonic stem cells. Exp Neurol 196:224–234

    PubMed  Google Scholar 

  149. Zurn AD, Winkel L, Menoud A, Djabali K, Aebischer P (1996) Combined effects of GDNF, BDNF, AND CNTF on motoneuron differentiation in vitro. J Neurosci Res 44:133–141

    CAS  PubMed  Google Scholar 

  150. Lunn JS, Hefferan MP, Marsala M, Feldman EL (2009) Stem cells: comprehensive treatments for amyotrophic lateral sclerosis in conjunction with growth factor delivery. Growth Factors 27:133–140

    CAS  PubMed  Google Scholar 

  151. Litsiou A, Hanson S, Streit A (2005) A balance of FGF, BMP and Wnt signalling positions the future placode territory in the head. Development 132:4051–4062

    CAS  PubMed  Google Scholar 

  152. Brugmann SA, Moody SA (2005) Induction and specification of the vertebrate ectodermal placodes: precursors of the cranial sensory organs. Biol Cell 97:303–319

    PubMed  Google Scholar 

  153. Streit A (2007) The preplacodal region: an ectodermal domain with multipotential progenitors that contribute to sense organs and cranial sensory ganglia. Int J Dev Biol 51:447–461

    CAS  PubMed  Google Scholar 

  154. Martin K, Groves AK (2006) Competence of cranial ectoderm to respond to FGF signaling suggests a two-step model of otic placode induction. Development 133:877–887

    CAS  PubMed  Google Scholar 

  155. Lee G, Chambers SM, Tomishima MJ, Studer L (2010) Derivation of neural crest cells from human pluripotent stem cells. Nat Protoc 5:688–701

    CAS  PubMed  Google Scholar 

  156. Brokhman I, Gamarnik-Ziegler L, Pomp O, Aharonowiz M, Reubinoff BE, Goldstein RS (2008) Peripheral sensory neurons differentiate from neural precursors derived from human embryonic stem cells. Differentiation 76:145–155

    CAS  PubMed  Google Scholar 

  157. Zhou Y, Snead ML (2008) Derivation of cranial neural crest-like cells from human embryonic stem cells. Biochem Biophys Res Commun 376:542–547

    CAS  PubMed  Google Scholar 

  158. Pomp O, Brokhman I, Ben-Dor I, Reubinoff B, Goldstein RS (2005) Generation of peripheral sensory and sympathetic neurons and neural crest cells from human embryonic stem cells. Stem Cells 23:923–930

    CAS  PubMed  Google Scholar 

  159. Brokhman I, Pomp O, Fishman L, Tennenbaum T, Amit M, Itzkovitz-Eldor J, Goldstein RS (2009) Genetic modification of human embryonic stem cells with adenoviral vectors: differences of infectability between lines and correlation of infectability with expression of the coxsackie and adenovirus receptor. Stem Cells Dev 18:447–456

    CAS  PubMed  Google Scholar 

  160. Jiang X, Gwye Y, McKeown SJ, Bronner-Fraser M, Lutzko C, Lawlor ER (2009) Isolation and characterization of neural crest stem cells derived from in vitro-differentiated human embryonic stem cells. Stem Cells Dev 18:1059–1070

    CAS  PubMed  Google Scholar 

  161. Hotta R, Pepdjonovic L, Anderson RB, Zhang D, Bergner AJ, Leung J, Pebay A, Young HM, Newgreen DF, Dottori M (2009) Small-molecule induction of neural crest-like cells derived from human neural progenitors. Stem Cells 27:2896–2905

    CAS  PubMed  Google Scholar 

  162. Valensi-Kurtz M, Lefler S, Cohen MA, Aharonowiz M, Cohen-Kupiec R, Sheinin A, Ashery U, Reubinoff B, Weil M (2010) Enriched population of pns neurons derived from human embryonic stem cells as a platform for studying peripheral neuropathies. PLoS One 5:e9290

    PubMed  Google Scholar 

  163. Lee G, Kim H, Elkabetz Y, Al Shamy G, Panagiotakos G, Barberi T, Tabar V, Studer L (2007) Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat Biotechnol 25:1468–1475

    CAS  PubMed  Google Scholar 

  164. Mateizel I, De Temmerman N, Ullmann U, Cauffman G, Sermon K, Van de Velde H, De Rycke M, Degreef E, Devroey P, Liebaers I, Van Steirteghem A (2006) Derivation of human embryonic stem cell lines from embryos obtained after IVF and after PGD for monogenic disorders. Hum Reprod 21:503–511

    CAS  PubMed  Google Scholar 

  165. Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M, Isacson O, Jaenisch R (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136:964–977

    CAS  PubMed  Google Scholar 

  166. Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K, Daley GQ (2008) Disease-specific induced pluripotent stem cells. Cell 134:877–886

    CAS  PubMed  Google Scholar 

  167. Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, Wichterle H, Henderson CE, Eggan K (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321:1218–1221

    CAS  PubMed  Google Scholar 

  168. Close P, Hawkes N, Cornez I, Creppe C, Lambert CA, Rogister B, Siebenlist U, Merville MP, Slaugenhaupt SA, Bours V, Svejstrup JQ, Chariot A (2006) Transcription impairment and cell migration defects in elongator-depleted cells: implication for familial dysautonomia. Mol Cell 22:521–531

    CAS  PubMed  Google Scholar 

  169. Creppe C, Malinouskaya L, Volvert ML, Gillard M, Close P, Malaise O, Laguesse S, Cornez I, Rahmouni S, Ormenese S, Belachew S, Malgrange B, Chapelle JP, Siebenlist U, Moonen G, Chariot A, Nguyen L (2009) Elongator controls the migration and differentiation of cortical neurons through acetylation of alpha-tubulin. Cell 136:551–564

    CAS  PubMed  Google Scholar 

  170. Lee G, Papapetrou EP, Kim H, Chambers SM, Tomishima MJ, Fasano CA, Ganat YM, Menon J, Shimizu F, Viale A, Tabar V, Sadelain M, Studer L (2009) Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461:402–406

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte Malgrange.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malgrange, B., Borgs, L., Grobarczyk, B. et al. Using human pluripotent stem cells to untangle neurodegenerative disease mechanisms. Cell. Mol. Life Sci. 68, 635–649 (2011). https://doi.org/10.1007/s00018-010-0557-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0557-6

Keywords

Navigation