Skip to main content

Advertisement

Log in

Mitochondrial DNA replication and disease: insights from DNA polymerase γ mutations

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

DNA polymerase γ (pol γ), encoded by POLG, is responsible for replicating human mitochondrial DNA. About 150 mutations in the human POLG have been identified in patients with mitochondrial diseases such as Alpers syndrome, progressive external ophthalmoplegia, and ataxia-neuropathy syndromes. Because many of the mutations are described in single citations with no genotypic family history, it is important to ascertain which mutations cause or contribute to mitochondrial disease. The vast majority of data about POLG mutations has been generated from biochemical characterizations of recombinant pol γ. However, recently, the study of mitochondrial dysfunction in Saccharomyces cerevisiae and mouse models provides important in vivo evidence for the role of POLG mutations in disease. Also, the published 3D-structure of the human pol γ assists in explaining some of the biochemical and genetic properties of the mutants. This review summarizes the current evidence that identifies and explains disease-causing POLG mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bebenek K, Kunkel TA (2004) Functions of DNA polymerases. Adv Protein Chem 69:137–165

    CAS  PubMed  Google Scholar 

  2. Ropp PA, Copeland WC (1996) Cloning and characterization of the human mitochondrial DNA polymerase, DNA polymerase gamma. Genomics 36:449–458

    CAS  PubMed  Google Scholar 

  3. Sweasy JB, Lauper JM, Eckert KA (2006) DNA polymerases and human diseases. Radiat Res 166:693–714

    CAS  PubMed  Google Scholar 

  4. Graziewicz MA, Longley MJ, Copeland WC (2006) DNA polymerase gamma in mitochondrial DNA replication and repair. Chem Rev 106:383–405

    CAS  PubMed  Google Scholar 

  5. Lim SE, Longley MJ, Copeland WC (1999) The mitochondrial p55 accessory subunit of human DNA polymerase gamma enhances DNA binding, promotes processive DNA synthesis, and confers N-ethylmaleimide resistance. J Biol Chem 274:38197–38203

    CAS  PubMed  Google Scholar 

  6. Korhonen JA, Pham XH, Pellegrini M, Falkenberg M (2004) Reconstitution of a minimal mtDNA replisome in vitro. EMBO J 23:2423–2429

    CAS  PubMed  Google Scholar 

  7. Brown TA, Cecconi C, Tkachuk AN, Bustamante C, Clayton DA (2005) Replication of mitochondrial DNA occurs by strand displacement with alternative light-strand origins, not via a strand-coupled mechanism. Genes Dev 19:2466–2476

    CAS  PubMed  Google Scholar 

  8. Bogenhagen DF, Clayton DA (2003) Concluding remarks: the mitochondrial DNA replication bubble has not burst. Trends Biochem Sci 28:404–405

    CAS  PubMed  Google Scholar 

  9. Bogenhagen DF, Clayton DA (2003) The mitochondrial DNA replication bubble has not burst. Trends Biochem Sci 28:357–360

    CAS  PubMed  Google Scholar 

  10. Holt IJ, Jacobs HT (2003) Response: the mitochondrial DNA replication bubble has not burst. Trends Biochem Sci 28:355–356

    CAS  PubMed  Google Scholar 

  11. Shadel GS, Clayton DA (1997) Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem 66:409–435

    CAS  PubMed  Google Scholar 

  12. Bowmaker M, Yang MY, Yasukawa T, Reyes A, Jacobs HT, Huberman JA, Holt IJ (2003) Mammalian mitochondrial DNA replicates bidirectionally from an initiation zone. J Biol Chem 278:50961–50969

    CAS  PubMed  Google Scholar 

  13. Fernandez-Silva P, Enriquez JA, Montoya J (2003) Replication and transcription of mammalian mitochondrial DNA. Exp Physiol 88:41–56

    CAS  PubMed  Google Scholar 

  14. Chang DD, Clayton DA (1985) Priming of human mitochondrial DNA replication occurs at the light-strand promoter. Proc Natl Acad Sci USA 82:351–355

    CAS  PubMed  Google Scholar 

  15. Lee DY, Clayton DA (1996) Properties of a primer RNA–DNA hybrid at the mouse mitochondrial DNA leading-strand origin of replication. J Biol Chem 271:24262–24269

    CAS  PubMed  Google Scholar 

  16. Xu B, Clayton DA (1996) RNA–DNA hybrid formation at the human mitochondrial heavy-strand origin ceases at replication start sites: an implication for RNA–DNA hybrids serving as primers. EMBO J 15:3135–3143

    CAS  PubMed  Google Scholar 

  17. Robberson DL, Clayton DA (1972) Replication of mitochondrial DNA in mouse L cells and their thymidine kinase derivatives: displacement replication on a covalently-closed circular template. Proc Natl Acad Sci USA 69:3810–3814

    CAS  PubMed  Google Scholar 

  18. Tapper DP, Clayton DA (1981) Mechanism of replication of human mitochondrial DNA. Localization of the 5′ ends of nascent daughter strands. J Biol Chem 256:5109–5115

    CAS  PubMed  Google Scholar 

  19. Kang D, Miyako K, Kai Y, Irie T, Takeshige K (1997) In vivo determination of replication origins of human mitochondrial DNA by ligation-mediated polymerase chain reaction. J Biol Chem 272:15275–15279

    CAS  PubMed  Google Scholar 

  20. Wong TW, Clayton DA (1985) In vitro replication of human mitochondrial DNA: accurate initiation at the origin of light-strand synthesis. Cell 42:951–958

    CAS  PubMed  Google Scholar 

  21. Fuste JM, Wanrooij S, Jemt E, Granycome CE, Cluett TJ, Shi Y, Atanassova N, Holt IJ, Gustafsson CM, Falkenberg M (2010) Mitochondrial RNA polymerase is needed for activation of the origin of light-strand DNA replication. Mol Cell 37:67–78

    CAS  PubMed  Google Scholar 

  22. Holt IJ, Lorimer HE, Jacobs HT (2000) Coupled leading- and lagging-strand synthesis of mammalian mitochondrial DNA. Cell 100:515–524

    CAS  PubMed  Google Scholar 

  23. Yang MY, Bowmaker M, Reyes A, Vergani L, Angeli P, Gringeri E, Jacobs HT, Holt IJ (2002) Biased incorporation of ribonucleotides on the mitochondrial L-strand accounts for apparent strand-asymmetric DNA replication. Cell 111:495–505

    CAS  PubMed  Google Scholar 

  24. Yasukawa T, Yang MY, Jacobs HT, Holt IJ (2005) A bidirectional origin of replication maps to the major noncoding region of human mitochondrial DNA. Mol Cell 18:651–662

    CAS  PubMed  Google Scholar 

  25. Yasukawa T, Reyes A, Cluett TJ, Yang MY, Bowmaker M, Jacobs HT, Holt IJ (2006) Replication of vertebrate mitochondrial DNA entails transient ribonucleotide incorporation throughout the lagging strand. EMBO J 25:5358–5371

    CAS  PubMed  Google Scholar 

  26. Pohjoismaki JL, Holmes JB, Wood SR, Yang MY, Yasukawa T, Reyes A, Bailey LJ, Cluett TJ, Goffart S, Willcox S, Rigby RE, Jackson AP, Spelbrink JN, Griffith JD, Crouch RJ, Jacobs HT, Holt IJ (2010) Mammalian mitochondrial DNA replication intermediates are essentially duplex but contain extensive tracts of RNA/DNA hybrid. J Mol Biol 397:1144–1155

    CAS  PubMed  Google Scholar 

  27. Brown TA, Tkachuk AN, Clayton DA (2008) Native R-loops persist throughout the mouse mitochondrial DNA genome. J Biol Chem 283:36743–36751

    CAS  PubMed  Google Scholar 

  28. Copeland WC, Longley MJ (2008) DNA2 resolves expanding flap in mitochondrial base excision repair. Mol Cell 32:457–458

    CAS  PubMed  Google Scholar 

  29. Longley MJ, Prasad R, Srivastava DK, Wilson SH, Copeland WC (1998) Identification of 5′-deoxyribose phosphate lyase activity in human DNA polymerase gamma and its role in mitochondrial base excision repair in vitro. Proc Natl Acad Sci USA 95:12244–12248

    CAS  PubMed  Google Scholar 

  30. Akbari M, Visnes T, Krokan HE, Otterlei M (2008) Mitochondrial base excision repair of uracil and AP sites takes place by single-nucleotide insertion and long-patch DNA synthesis. DNA Repair (Amst) 7:605–616

    CAS  Google Scholar 

  31. Liu P, Qian L, Sung JS, de Souza-Pinto NC, Zheng L, Bogenhagen DF, Bohr VA, Wilson DM 3rd, Shen B, Demple B (2008) Removal of oxidative DNA damage via FEN1-dependent long-patch base excision repair in human cell mitochondria. Mol Cell Biol 28:4975–4987

    CAS  PubMed  Google Scholar 

  32. Szczesny B, Tann AW, Longley MJ, Copeland WC, Mitra S (2008) Long patch base excision repair in mammalian mitochondrial genomes. J Biol Chem 283:26349–26356

    CAS  PubMed  Google Scholar 

  33. Zheng L, Zhou M, Guo Z, Lu H, Qian L, Dai H, Qiu J, Yakubovskaya E, Bogenhagen DF, Demple B, Shen B (2008) Human DNA2 is a mitochondrial nuclease/helicase for efficient processing of DNA replication and repair intermediates. Mol Cell 32:325–336

    CAS  PubMed  Google Scholar 

  34. Duxin JP, Dao B, Martinsson P, Rajala N, Guittat L, Campbell JL, Spelbrink JN, Stewart SA (2009) Human Dna2 is a nuclear and mitochondrial DNA maintenance protein. Mol Cell Biol 29:4274–4282

    CAS  PubMed  Google Scholar 

  35. Milone M, Massie R (2010) Polymerase gamma 1 mutations: clinical correlations. Neurologist 16:84–91

    PubMed  Google Scholar 

  36. Cohen BH, Naviaux RK (2010) The clinical diagnosis of POLG disease and other mitochondrial DNA depletion disorders. Methods 51:364–373

    CAS  PubMed  Google Scholar 

  37. Kollberg G, Moslemi AR, Darin N, Nennesmo I, Bjarnadottir I, Uvebrant P, Holme E, Melberg A, Tulinius M, Oldfors A (2006) POLG1 mutations associated with progressive encephalopathy in childhood. J Neuropathol Exp Neurol 65:758–768

    CAS  PubMed  Google Scholar 

  38. Horvath R, Hudson G, Ferrari G, Futterer N, Ahola S, Lamantea E, Prokisch H, Lochmuller H, McFarland R, Ramesh V, Klopstock T, Freisinger P, Salvi F, Mayr JA, Santer R, Tesarova M, Zeman J, Udd B, Taylor RW, Turnbull D, Suomalainen A, Zeviani M, Chinnery PF (2006) Phenotypic spectrum associated with mutations of the mitochondrial polymerase gamma gene. Brain 129:1674–1684

    PubMed  Google Scholar 

  39. Foury F (1989) Cloning and sequencing of the nuclear gene MIP1 encoding the catalytic subunit of the yeast mitochondrial DNA polymerase. J Biol Chem 264:20552–20560

    CAS  PubMed  Google Scholar 

  40. Genga A, Bianchi L, Foury F (1986) A nuclear mutant of Saccharomyces cerevisiae deficient in mitochondrial DNA replication and polymerase activity. J Biol Chem 261:9328–9332

    CAS  PubMed  Google Scholar 

  41. Kalifa L, Sia EA (2007) Analysis of Rev1p and Pol zeta in mitochondrial mutagenesis suggests an alternative pathway of damage tolerance. DNA Repair (Amst) 6:1732–1739

    CAS  Google Scholar 

  42. Zhang H, Chatterjee A, Singh KK (2006) Saccharomyces cerevisiae polymerase zeta functions in mitochondria. Genetics 172:2683–2688

    CAS  PubMed  Google Scholar 

  43. Baruffini E, Ferrero I, Foury F (2010) In vivo analysis of mtDNA replication defects in yeast. Methods 51:426–436

    CAS  PubMed  Google Scholar 

  44. Strand MK, Copeland WC (2002) Measuring mtDNA mutation rates in Saccharomyces cerevisiae using the mtArg8 assay. Methods Mol Biol 197:151–157

    CAS  PubMed  Google Scholar 

  45. Strand MK, Stuart GR, Longley MJ, Graziewicz MA, Dominick OC, Copeland WC (2003) POS5 gene of Saccharomyces cerevisiae encodes a mitochondrial NADH kinase required for stability of mitochondrial DNA. Eukaryot Cell 2:809–820

    CAS  PubMed  Google Scholar 

  46. Phadnis N, Sia RA, Sia EA (2005) Analysis of repeat-mediated deletions in the mitochondrial genome of Saccharomyces cerevisiae. Genetics 171:1549–1559

    CAS  PubMed  Google Scholar 

  47. Mookerjee SA, Sia EA (2006) Overlapping contributions of Msh1p and putative recombination proteins Cce1p, Din7p, and Mhr1p in large-scale recombination and genome sorting events in the mitochondrial genome of Saccharomyces cerevisiae. Mutat Res 595:91–106

    CAS  PubMed  Google Scholar 

  48. Pogorzala L, Mookerjee S, Sia EA (2009) Evidence that msh1p plays multiple roles in mitochondrial base excision repair. Genetics 182:699–709

    CAS  PubMed  Google Scholar 

  49. Baruffini E, Lodi T (2010) Construction and validation of a yeast model system for studying in vivo the susceptibility to nucleoside analogues of DNA polymerase gamma allelic variants. Mitochondrion 10:183–187

    CAS  PubMed  Google Scholar 

  50. Stuart GR, Santos JH, Strand MK, Van Houten B, Copeland WC (2006) Mitochondrial DNA defects in S. cerevisiae with mutations in DNA polymerase gamma associated with progressive external ophthalmolplegia. Hum Mol Genet 15:363–374

    CAS  PubMed  Google Scholar 

  51. Stumpf JD, Bailey CM, Spell D, Stillwagon M, Anderson KS, Copeland WC (2010) mip1 containing mutations associated with mitochondrial disease causes mutagenesis and depletion of mtDNA in Saccharomyces cerevisiae. Hum Mol Genet 19:2123–2133

    CAS  PubMed  Google Scholar 

  52. Kasiviswanathan R, Longley MJ, Chan SS, Copeland WC (2009) Disease mutations in the human mitochondrial DNA polymerase thumb subdomain impart severe defects in mtDNA replication. J Biol Chem 284:19501–19510

    CAS  PubMed  Google Scholar 

  53. Baruffini E, Lodi T, Dallabona C, Puglisi A, Zeviani M, Ferrero I (2006) Genetic and chemical rescue of the Saccharomyces cerevisiae phenotype induced by mitochondrial DNA polymerase mutations associated with progressive external ophthalmoplegia in humans. Hum Mol Genet 15:2846–2855

    CAS  PubMed  Google Scholar 

  54. Vanderstraeten S, Van den Brule S, Hu J, Foury F (1998) The role of 3′–5′ exonucleolytic proofreading and mismatch repair in yeast mitochondrial DNA error avoidance. J Biol Chem 273:23690–23697

    CAS  PubMed  Google Scholar 

  55. Foury F, Vanderstraeten S (1992) Yeast mitochondrial DNA mutators with deficient proofreading exonucleolytic activity. EMBO J 11:2717–2726

    CAS  PubMed  Google Scholar 

  56. Longley MJ, Ropp PA, Lim SE, Copeland WC (1998) Characterization of the native and recombinant catalytic subunit of human DNA polymerase gamma: identification of residues critical for exonuclease activity and dideoxynucleotide sensitivity. Biochemistry 37:10529–10539

    CAS  PubMed  Google Scholar 

  57. Hu JP, Vanderstraeten S, Foury F (1995) Isolation and characterization of ten mutator alleles of the mitochondrial DNA polymerase-encoding MIP1 gene from Saccharomyces cerevisiae. Gene 160:105–110

    CAS  PubMed  Google Scholar 

  58. Vermulst M, Bielas JH, Kujoth GC, Ladiges WC, Rabinovitch PS, Prolla TA, Loeb LA (2007) Mitochondrial point mutations do not limit the natural lifespan of mice. Nat Genet 39:540–543

    CAS  PubMed  Google Scholar 

  59. Szczepanowska K, Foury F (2010) A cluster of pathogenic mutations in the 3′–5′ exonuclease domain of DNA polymerase gamma defines a novel module coupling DNA synthesis and degradation. Hum Mol Genet 19:3516–3529

    CAS  PubMed  Google Scholar 

  60. Lecrenier N, Foury F (1995) Overexpression of the RNR1 gene rescues Saccharomyces cerevisiae mutants in the mitochondrial DNA polymerase-encoding MIP1 gene. Mol Gen Genet 249:1–7

    CAS  PubMed  Google Scholar 

  61. Chabes A, Stillman B (2007) Constitutively high dNTP concentration inhibits cell cycle progression and the DNA damage checkpoint in yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 104:1183–1188

    CAS  PubMed  Google Scholar 

  62. de Moura MB, dos Santos LS, Van Houten B (2010) Mitochondrial dysfunction in neurodegenerative diseases and cancer. Environ Mol Mutagen 51:391–405

    PubMed  Google Scholar 

  63. Graziewicz MA, Longley MJ, Bienstock RJ, Zeviani M, Copeland WC (2004) Structure-function defects of human mitochondrial DNA polymerase in autosomal dominant progressive external ophthalmoplegia. Nat Struct Mol Biol 11:770–776

    CAS  PubMed  Google Scholar 

  64. Lim SE, Ponamarev MV, Longley MJ, Copeland WC (2003) Structural determinants in human DNA polymerase gamma account for mitochondrial toxicity from nucleoside analogs. J Mol Biol 329:45–57

    CAS  PubMed  Google Scholar 

  65. Bienstock RJ, Copeland WC (2004) Molecular insights into NRTI inhibition and mitochondrial toxicity revealed from a structural model of the human mitochondrial DNA polymerase. Mitochondrion 4:203–213

    CAS  PubMed  Google Scholar 

  66. Lamantea E, Tiranti V, Bordoni A, Toscano A, Bono F, Servidei S, Papadimitriou A, Spelbrink H, Silvestri L, Casari G, Comi G, Zeviani M (2002) Mutations of mitochondrial DNA polymerase gamma are a frequent cause of autosomal dominant or recessive progressive external ophthalmoplegia. Ann Neurol 52:211–219

    CAS  PubMed  Google Scholar 

  67. Mancuso M, Filosto M, Bellan M, Liguori R, Montagna P, Baruzzi A, DiMauro S, Carelli V (2004) POLG mutations causing ophthalmoplegia, sensorimotor polyneuropathy, ataxia, and deafness. Neurology 62:316–318

    CAS  PubMed  Google Scholar 

  68. Di Fonzo A, Bordoni A, Crimi M, Sara G, Bo RD, Bresolin N, Comi GP (2003) POLG mutations in sporadic mitochondrial disorders with multiple mtDNA deletions. Hum Mutat 22:498–499

    PubMed  Google Scholar 

  69. Van Goethem G, Dermaut B, Lofgren A, Martin JJ, Van Broeckhoven C (2001) Mutation of POLG is associated with progressive external ophthalmoplegia characterized by mtDNA deletions. Nat Genet 28:211–212

    PubMed  Google Scholar 

  70. Ponamarev MV, Longley MJ, Nguyen D, Kunkel TA, Copeland WC (2002) Active site mutation in DNA polymerase gamma associated with progressive external ophthalmoplegia causes error-prone DNA synthesis. J Biol Chem 277:15225–15228

    CAS  PubMed  Google Scholar 

  71. Graziewicz MA, Bienstock RJ, Copeland WC (2007) The DNA polymerase gamma Y955C disease variant associated with PEO and parkinsonism mediates the incorporation and translesion synthesis opposite 7, 8-dihydro-8-oxo-2′-deoxyguanosine. Hum Mol Genet 16:2729–2739

    CAS  PubMed  Google Scholar 

  72. Lewis W, Day BJ, Kohler JJ, Hosseini SH, Chan SSL, Green E, Haase CP, Keebaugh E, Long R, Ludaway T, Russ R, Steltzer J, Tioleco N, Santoianni R, Copeland WC (2007) mtDNA depletion, oxidative stress, cardiomyopathy, and death from transgenic cardiac targeted human mutant polymerase gamma. Lab Invest 87:326–335

    CAS  PubMed  Google Scholar 

  73. Yakubovshaya E, Chen Z, Carrodeguas JA, Kisker C, Bogenhagen DF (2006) Functional human mitochondrial DNA polymerase gamma forms a heterotrimer. J Biol Chem 281:374–382

    Google Scholar 

  74. Lee YS, Kennedy WD, Yin YW (2009) Structural insight into processive human mitochondrial DNA synthesis and disease-related polymerase mutations. Cell 139:312–324

    CAS  PubMed  Google Scholar 

  75. Lee YS, Lee S, Demeler B, Molineux IJ, Johnson KA, Yin YW (2010) Each monomer of the dimeric accessory protein for human mitochondrial DNA polymerase has a distinct role in conferring processivity. J Biol Chem 285:1490–1499

    CAS  PubMed  Google Scholar 

  76. Taanman JW, Rahman S, Pagnamenta AT, Morris AA, Bitner-Glindzicz M, Wolf NI, Leonard JV, Clayton PT, Schapira AH (2009) Analysis of mutant DNA polymerase gamma in patients with mitochondrial DNA depletion. Hum Mutat 30:248–254

    CAS  PubMed  Google Scholar 

  77. Harrower T, Stewart JD, Hudson G, Houlden H, Warner G, O’Donovan DG, Findlay LJ, Taylor RW, De Silva R, Chinnery PF (2008) POLG1 mutations manifesting as autosomal recessive axonal Charcot-Marie-Tooth disease. Arch Neurol 65:133–136

    PubMed  Google Scholar 

  78. Spinazzola A, Invernizzi F, Carrara F, Lamantea E, Donati A, Dirocco M, Giordano I, Meznaric-Petrusa M, Baruffini E, Ferrero I, Zeviani M (2009) Clinical and molecular features of mitochondrial DNA depletion syndromes. J Inherit Metab Dis 265:174–192

    CAS  Google Scholar 

  79. Ashley N, O’Rourke A, Smith C, Adams S, Gowda V, Zeviani M, Brown GK, Fratter C, Poulton J (2008) Depletion of mitochondrial DNA in fibroblast cultures from patients with POLG1 mutations is a consequence of catalytic mutations. Hum Mol Genet 17:2496–2506

    CAS  PubMed  Google Scholar 

  80. Ferrari G, Lamantea E, Donati A, Filosto M, Briem E, Carrara F, Parini R, Simonati A, Santer R, Zeviani M (2005) Infantile hepatocerebral syndromes associated with mutations in the mitochondrial DNA polymerase- γA. Brain 128:723–731

    PubMed  Google Scholar 

  81. Lee YS, Molineux IJ, Yin YW (2010) A single mutation in human mitochondrial DNA polymerase pol gammaA affects both polymerization and proofreading activities, but only as a holoenzyme. J Biol Chem 285:28105–28116

    CAS  PubMed  Google Scholar 

  82. Luoma PT, Luo N, Loscher WN, Farr CL, Horvath R, Wanschitz J, Kiechl S, Kaguni LS, Suomalainen A (2005) Functional defects due to spacer-region mutations of human mitochondrial DNA polymerase in a family with an ataxia-myopathy syndrome. Hum Mol Genet 14:1907–1920

    CAS  PubMed  Google Scholar 

  83. Chan SSL, Longley MJ, Copeland WC (2005) The common A467T mutation in the human mitochondrial DNA polymerase (POLG) compromises catalytic efficiency and interaction with the accessory subunit. J Biol Chem 280:31341–31346

    CAS  PubMed  Google Scholar 

  84. Hakonen AH, Heiskanen S, Juvonen V, Lappalainen I, Luoma PT, Rantamaki M, Goethem GV, Lofgren A, Hackman P, Paetau A, Kaakkola S, Majamaa K, Varilo T, Udd B, Kaariainen H, Bindoff LA, Suomalainen A (2005) Mitochondrial DNA polymerase W748S mutation: a common cause of autosomal recessive ataxia with ancient European origin. Am J Hum Genet 77:430–441

    CAS  PubMed  Google Scholar 

  85. Van Goethem G, Luoma P, Rantamaki M, Al Memar A, Kaakkola S, Hackman P, Krahe R, Lofgren A, Martin JJ, De Jonghe P, Suomalainen A, Udd B, Van Broeckhoven C (2004) POLG mutations in neurodegenerative disorders with ataxia but no muscle involvement. Neurology 63:1251–1257

    PubMed  Google Scholar 

  86. Chan SSL, Longley MJ, Copeland WC (2006) Modulation of the W748S mutation in DNA polymerase gamma by the E1143G polymorphism in mitochondrial disorders. Hum Mol Genet 15:3473–3483

    CAS  PubMed  Google Scholar 

  87. Nguyen KV, Sharief F, Chan SSL, Copeland WC, Naviaux RK (2006) Molecular diagnosis of Alpers syndrome. J Hepatol 45:108–116

    CAS  PubMed  Google Scholar 

  88. Wiltshire E, Davidzon G, DiMauro S, Akman H, Sadleir L, Hass L, Zuccollo J, McEwen A, Thorburn DR (2008) Juvenile Alpers disease. Arch Neurol 65:121–124

    PubMed  Google Scholar 

  89. Gonzalez-Vioque E, Blazquez A, Fernandez-Moreira D, Bornstein B, Bautista J, Arpa J, Navarro C, Campos Y, Fernandez-Moreno MA, Garesse R, Arenas J, Martin MA (2006) Association of novel POLG mutations and multiple mitochondrial DNA deletions with variable clinical phenotypes in a Spanish population. Arch Neurol 63:107–111

    PubMed  Google Scholar 

  90. Davidzon G, Greene P, Mancuso M, Klos KJ, Ahlskog JE, Hirano M, Dimauro S (2006) Early-onset familial Parkinsonism due to POLG mutations. Ann Neurol 59:859–862

    CAS  PubMed  Google Scholar 

  91. Gago MF, Rosas MJ, Guimaraes J, Ferreira M, Vilarinho L, Castro L, Carpenter S (2006) SANDO: two novel mutations in POLG1 gene. Neuromuscul Disord 16:507–509

    PubMed  Google Scholar 

  92. Del Bo R, Bordoni A, Sciacco M, Di Fonzo A, Galbiati S, Crimi M, Bresolin N, Comi GP (2003) Remarkable infidelity of polymerase gammaA associated with mutations in POLG1 exonuclease domain. Neurology 61:903–908

    CAS  PubMed  Google Scholar 

  93. Hance N, Ekstrand MI, Trifunovic A (2005) Mitochondrial DNA polymerase gamma is essential for mammalian embryogenesis. Hum Mol Genet 14:1775–1783

    CAS  PubMed  Google Scholar 

  94. Martinez-Azorin F, Calleja M, Hernandez-Sierra R, Farr CL, Kaguni LS, Garesse R (2008) Over-expression of the catalytic core of mitochondrial DNA (mtDNA) polymerase in the nervous system of Drosophila melanogaster reduces median life span by inducing mtDNA depletion. J Neurochem 105:165–176

    CAS  PubMed  Google Scholar 

  95. Longley MJ, Nguyen D, Kunkel TA, Copeland WC (2001) The fidelity of human DNA polymerase gamma with and without exonucleolytic proofreading and the p55 accessory subunit. J Biol Chem 276:38555–38562

    CAS  PubMed  Google Scholar 

  96. Zhang D, Mott JL, Chang SW, Denniger G, Feng Z, Zassenhaus HP (2000) Construction of transgenic mice with tissue-specific acceleration of mitochondrial DNA mutagenesis. Genomics 69:151–161

    CAS  PubMed  Google Scholar 

  97. Mott JL, Zhang D, Freeman JC, Mikolajczak P, Chang SW, Zassenhaus HP (2004) Cardiac disease due to random mitochondrial DNA mutations is prevented by cyclosporin A. Biochem Biophys Res Commun 319:1210–1215

    CAS  PubMed  Google Scholar 

  98. Zhang D, Mott JL, Farrar P, Ryerse JS, Chang SW, Stevens M, Denniger G, Zassenhaus HP (2003) Mitochondrial DNA mutations activate the mitochondrial apoptotic pathway and cause dilated cardiomyopathy. Cardiovasc Res 57:147–157

    CAS  PubMed  Google Scholar 

  99. Mott JL, Zhang D, Chang SW, Zassenhaus HP (2006) Mitochondrial DNA mutations cause resistance to opening of the permeability transition pore. Biochim Biophys Acta 1757:596–603

    CAS  PubMed  Google Scholar 

  100. Zhang D, Mott JL, Chang SW, Stevens M, Mikolajczak P, Zassenhaus HP (2005) Mitochondrial DNA mutations activate programmed cell survival in the mouse heart. Am J Physiol Heart Circ Physiol 288:H2476–H2483

    CAS  PubMed  Google Scholar 

  101. Bensch KG, Mott JL, Chang SW, Hansen PA, Moxley MA, Chambers KT, de Graaf W, Zassenhaus HP, Corbett JA (2009) Selective mtDNA mutation accumulation results in beta-cell apoptosis and diabetes development. Am J Physiol Endocrinol Metab 296:E672–E680

    CAS  PubMed  Google Scholar 

  102. Bensch KG, Degraaf W, Hansen PA, Zassenhaus HP, Corbett JA (2007) A transgenic model to study the pathogenesis of somatic mtDNA mutation accumulation in beta-cells. Diabetes Obes Metab 9(Suppl 2):74–80

    CAS  PubMed  Google Scholar 

  103. Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly YM, Gidlof S, Oldfors A, Wibom R, Tornell J, Jacobs HT, Larsson NG (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429:417–423

    CAS  PubMed  Google Scholar 

  104. Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, Hofer T, Seo AY, Sullivan R, Jobling WA, Morrow JD, Van Remmen H, Sedivy JM, Yamasoba T, Tanokura M, Weindruch R, Leeuwenburgh C, Prolla TA (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309:481–484

    CAS  PubMed  Google Scholar 

  105. Someya S, Yamasoba T, Kujoth GC, Pugh TD, Weindruch R, Tanokura M, Prolla TA (2008) The role of mtDNA mutations in the pathogenesis of age-related hearing loss in mice carrying a mutator DNA polymerase gamma. Neurobiol Aging 29:1080–1092

    CAS  PubMed  Google Scholar 

  106. Niu X, Trifunovic A, Larsson NG, Canlon B (2007) Somatic mtDNA mutations cause progressive hearing loss in the mouse. Exp Cell Res 313:3924–3934

    CAS  PubMed  Google Scholar 

  107. Trifunovic A, Hansson A, Wredenberg A, Rovio AT, Dufour E, Khvorostov I, Spelbrink JN, Wibom R, Jacobs HT, Larsson NG (2005) Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proc Natl Acad Sci USA 102:17993–17998

    CAS  PubMed  Google Scholar 

  108. Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20:145–147

    CAS  PubMed  Google Scholar 

  109. Dubec SJ, Aurora R, Zassenhaus HP (2008) Mitochondrial DNA mutations may contribute to aging via cell death caused by peptides that induce cytochrome c release. Rejuvenation Res 11:611–619

    CAS  PubMed  Google Scholar 

  110. Dai DF, Chen T, Wanagat J, Laflamme M, Marcinek DJ, Emond MJ, Ngo CP, Prolla TA, Rabinovitch PS (2010) Age-dependent cardiomyopathy in mitochondrial mutator mice is attenuated by overexpression of catalase targeted to mitochondria. Aging Cell 9:536–544

    CAS  PubMed  Google Scholar 

  111. Tarnopolsky MA (2009) Mitochondrial DNA shifting in older adults following resistance exercise training. Appl Physiol Nutr Metab 34:348–354

    CAS  PubMed  Google Scholar 

  112. Yamasoba T, Someya S, Yamada C, Weindruch R, Prolla TA, Tanokura M (2007) Role of mitochondrial dysfunction and mitochondrial DNA mutations in age-related hearing loss. Hear Res 226:185–193

    CAS  PubMed  Google Scholar 

  113. Melov S, Hinerfeld D, Esposito L, Wallace DC (1997) Multi-organ characterization of mitochondrial genomic rearrangements in ad libitum and caloric restricted mice show striking somatic mitochondrial DNA rearrangements with age. Nucleic Acids Res 25:974–982

    CAS  PubMed  Google Scholar 

  114. Vermulst M, Bielas JH, Loeb LA (2008) Quantification of random mutations in the mitochondrial genome. Methods 46:263–268

    CAS  PubMed  Google Scholar 

  115. Greaves LC, Beadle NE, Taylor GA, Commane D, Mathers JC, Khrapko K, Turnbull DM (2009) Quantification of mitochondrial DNA mutation load. Aging Cell 8:566–572

    CAS  PubMed  Google Scholar 

  116. Vermulst M, Wanagat J, Kujoth GC, Bielas JH, Rabinovitch PS, Prolla TA, Loeb LA (2008) DNA deletions and clonal mutations drive premature aging in mitochondrial mutator mice. Nat Genet 40:392–394

    CAS  PubMed  Google Scholar 

  117. Tyynismaa H, Mjosund KP, Wanrooij S, Lappalainen I, Ylikallio E, Jalanko A, Spelbrink JN, Paetau A, Suomalainen A (2005) Mutant mitochondrial helicase Twinkle causes multiple mtDNA deletions and a late-onset mitochondrial disease in mice. Proc Natl Acad Sci USA 102:17687–17692

    CAS  PubMed  Google Scholar 

  118. Edgar D, Shabalina I, Camara Y, Wredenberg A, Calvaruso MA, Nijtmans L, Nedergaard J, Cannon B, Larsson NG, Trifunovic A (2009) Random point mutations with major effects on protein-coding genes are the driving force behind premature aging in mtDNA mutator mice. Cell Metab 10:131–138

    CAS  PubMed  Google Scholar 

  119. Vermulst M, Wanagat J, Loeb LA (2009) On mitochondria, mutations, and methodology. Cell Metab 10:437

    CAS  PubMed  Google Scholar 

  120. Guo X, Kudryavtseva E, Bodyak N, Nicholas A, Dombrovsky I, Yang D, Kraytsberg Y, Simon DK, Khrapko K (2010) Mitochondrial DNA deletions in mice in men: substantia nigra is much less affected in the mouse. Biochim Biophys Acta 1797:1159–1162

    CAS  PubMed  Google Scholar 

  121. Chen H, Vermulst M, Wang YE, Chomyn A, Prolla TA, McCaffery JM, Chan DC (2010) Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 141:280–289

    CAS  PubMed  Google Scholar 

  122. He Y, Wu J, Dressman DC, Iacobuzio-Donahue C, Markowitz SD, Velculescu VE, Diaz LA Jr, Kinzler KW, Vogelstein B, Papadopoulos N (2010) Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature 464:610–614

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Margaret Humble for maintaining and updating the Pol Gamma mutation database (http://tools.niehs.nih.gov/polg) and for her help in generating Fig. 3 of this review. We thank Dr. Rachelle Bienstock for help with the structural images in this review. We also thank Drs. Matthew Young and Rajesh Kasiviswanathan for the comments and suggestions from their critical reading of this manuscript. This work was supported by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences (ES 065078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William C. Copeland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stumpf, J.D., Copeland, W.C. Mitochondrial DNA replication and disease: insights from DNA polymerase γ mutations. Cell. Mol. Life Sci. 68, 219–233 (2011). https://doi.org/10.1007/s00018-010-0530-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0530-4

Keywords

Navigation