Skip to main content
Log in

Mechanistic principles of RAF kinase signaling

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The RAF family of kinases are key components acting downstream of receptor tyrosine kinases and cells employ several distinct mechanisms to strictly control their activity. RAF transitions from an inactive state, where the N-terminal regulatory region binds intramolecularly to the C-terminal kinase domain, to an open state capable of executing the phosphoryl transfer reaction. This transition involves changes both within and between the protein domains in RAF. Many different proteins regulate the transition between inactive and active states of RAF, including RAS and KSR, which are arguably the two most prominent regulators of RAF function. Recent developments have added several new twists to our understanding of RAF regulation. Among others, dimerization of the RAF kinase domain is emerging as a crucial step in the RAF activation process. The multitude of regulatory protein–protein interactions involving RAF remains a largely untapped area for therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bonner TI, Kerby SB, Sutrave P, Gunnell MA, Mark G, Rapp UR (1985) Structure and biological activity of human homologs of the raf/mil oncogene. Mol Cell Biol 5:1400–1407

    CAS  PubMed  Google Scholar 

  2. Beck TW, Huleihel M, Gunnell M, Bonner TI, Rapp UR (1987) The complete coding sequence of the human A-raf-1 oncogene and transforming activity of a human A-raf carrying retrovirus. Nucleic Acids Res 15:595–609

    Article  CAS  PubMed  Google Scholar 

  3. Huebner K, ar-Rushdi A, Griffin CA, Isobe M, Kozak C, Emanuel BS, Nagarajan L, Cleveland JL, Bonner TI, Goldsborough MD, Croce CM, Rapp U (1986) Actively transcribed genes in the raf oncogene group, located on the X chromosome in mouse and human. Proc Natl Acad Sci USA 83:3934–3938

    Article  CAS  PubMed  Google Scholar 

  4. Ikawa S, Fukui M, Ueyama Y, Tamaoki N, Yamamoto T, Toyoshima K (1988) B-raf, a new member of the raf family, is activated by DNA rearrangement. Mol Cell Biol 8:2651–2654

    CAS  PubMed  Google Scholar 

  5. Kornfeld K, Hom DB, Horvitz HR (1995) The ksr-1 gene encodes a novel protein kinase involved in Ras-mediated signaling in C. elegans. Cell 83:903–913

    Article  CAS  PubMed  Google Scholar 

  6. Sundaram M, Han M (1995) The C. elegans ksr-1 gene encodes a novel Raf-related kinase involved in Ras-mediated signal transduction. Cell 83:889–901

    Article  CAS  PubMed  Google Scholar 

  7. Therrien M, Chang HC, Solomon NM, Karim FD, Wassarman DA, Rubin GM (1995) KSR, a novel protein kinase required for RAS signal transduction. Cell 83:879–888

    Article  CAS  PubMed  Google Scholar 

  8. Channavajhala PL, Wu L, Cuozzo JW, Hall JP, Liu W, Lin LL, Zhang Y (2003) Identification of a novel human kinase supporter of Ras (hKSR-2) that functions as a negative regulator of Cot (Tpl2) signaling. J Biol Chem 278:47089–47097

    Article  CAS  PubMed  Google Scholar 

  9. Claperon A, Therrien M (2007) KSR and CNK: two scaffolds regulating RAS-mediated RAF activation. Oncogene 26:3143–3158

    Article  CAS  PubMed  Google Scholar 

  10. Kolch W (2005) Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol 6:827–837

    Article  CAS  PubMed  Google Scholar 

  11. McKay MM, Morrison DK (2007) Integrating signals from RTKs to ERK/MAPK. Oncogene 26:3113–3121

    Article  CAS  PubMed  Google Scholar 

  12. Wellbrock C, Karasarides M, Marais R (2004) The RAF proteins take centre stage. Nat Rev Mol Cell Biol 5:875–885

    Article  CAS  PubMed  Google Scholar 

  13. Zebisch A, Troppmair J (2006) Back to the roots: the remarkable RAF oncogene story. Cell Mol Life Sci 63:1314–1330

    Article  CAS  PubMed  Google Scholar 

  14. Luo Z, Diaz B, Marshall MS, Avruch J (1997) An intact Raf zinc finger is required for optimal binding to processed Ras and for ras-dependent Raf activation in situ. Mol Cell Biol 17:46–53

    CAS  PubMed  Google Scholar 

  15. Zhou M, Horita DA, Waugh DS, Byrd RA, Morrison DK (2002) Solution structure and functional analysis of the cysteine-rich C1 domain of kinase suppressor of Ras (KSR). J Mol Biol 315:435–446

    Article  CAS  PubMed  Google Scholar 

  16. Bondeva T, Balla A, Varnai P, Balla T (2002) Structural determinants of Ras–Raf interaction analyzed in live cells. Mol Biol Cell 13:2323–2333

    Article  CAS  PubMed  Google Scholar 

  17. Ding J, Tchaicheeyan O, Ambrosio L (2010) Drosophila Raf’s N terminus contains a novel conserved region and can contribute to torso RTK signaling. Genetics 184:717–729

    Article  CAS  PubMed  Google Scholar 

  18. Fischer A, Hekman M, Kuhlmann J, Rubio I, Wiese S, Rapp UR (2007) B- and C-RAF display essential differences in their binding to Ras: the isotype-specific N terminus of B-RAF facilitates Ras binding. J Biol Chem 282:26503–26516

    Article  CAS  PubMed  Google Scholar 

  19. Terai K, Matsuda M (2006) The amino-terminal B-Raf-specific region mediates calcium-dependent homo- and hetero-dimerization of Raf. EMBO J 25:3556–3564

    Article  CAS  PubMed  Google Scholar 

  20. Terai K, Matsuda M (2005) Ras binding opens c-Raf to expose the docking site for mitogen-activated protein kinase kinase. EMBO Rep 6:251–255

    Article  CAS  PubMed  Google Scholar 

  21. Kubicek M, Pacher M, Abraham D, Podar K, Eulitz M, Baccarini M (2002) Dephosphorylation of Ser-259 regulates Raf-1 membrane association. J Biol Chem 277:7913–7919

    Article  CAS  PubMed  Google Scholar 

  22. Dumaz N, Marais R (2003) Protein kinase A blocks Raf-1 activity by stimulating 14-3-3 binding and blocking Raf-1 interaction with Ras. J Biol Chem 278:29819–29823

    Article  CAS  PubMed  Google Scholar 

  23. Light Y, Paterson H, Marais R (2002) 14-3-3 antagonizes Ras-mediated Raf-1 recruitment to the plasma membrane to maintain signaling fidelity. Mol Cell Biol 22:4984–4996

    Article  CAS  PubMed  Google Scholar 

  24. Rommel C, Radziwill G, Moelling K, Hafen E (1997) Negative regulation of Raf activity by binding of 14-3-3 to the amino terminus of Raf in vivo. Mech Dev 64:95–104

    Article  CAS  PubMed  Google Scholar 

  25. Cutler RE Jr, Stephens RM, Saracino MR, Morrison DK (1998) Autoregulation of the Raf-1 serine/threonine kinase. Proc Natl Acad Sci USA 95:9214–9219

    Article  CAS  PubMed  Google Scholar 

  26. Tran NH, Wu X, Frost JA (2005) B-Raf and Raf-1 are regulated by distinct autoregulatory mechanisms. J Biol Chem 280:16244–16253

    Article  CAS  PubMed  Google Scholar 

  27. Tran NH, Frost JA (2003) Phosphorylation of Raf-1 by p21-activated kinase 1 and Src regulates Raf-1 autoinhibition. J Biol Chem 278:11221–11226

    Article  CAS  PubMed  Google Scholar 

  28. McKay MM, Ritt DA, Morrison DK (2009) Signaling dynamics of the KSR1 scaffold complex. Proc Natl Acad Sci USA 106:11022–11027

    Article  CAS  PubMed  Google Scholar 

  29. Roy F, Laberge G, Douziech M, Ferland-McCollough D, Therrien M (2002) KSR is a scaffold required for activation of the ERK/MAPK module. Genes Dev 16:427–438

    Article  CAS  PubMed  Google Scholar 

  30. Michaud NR, Therrien M, Cacace A, Edsall LC, Spiegel S, Rubin GM, Morrison DK (1997) KSR stimulates Raf-1 activity in a kinase-independent manner. Proc Natl Acad Sci USA 94:12792–12796

    Article  CAS  PubMed  Google Scholar 

  31. Cacace AM, Michaud NR, Therrien M, Mathes K, Copeland T, Rubin GM, Morrison DK (1999) Identification of constitutive and ras-inducible phosphorylation sites of KSR: implications for 14-3-3 binding, mitogen-activated protein kinase binding, and KSR overexpression. Mol Cell Biol 19:229–240

    CAS  PubMed  Google Scholar 

  32. Muller J, Ory S, Copeland T, Piwnica-Worms H, Morrison DK (2001) C-TAK1 regulates Ras signaling by phosphorylating the MAPK scaffold, KSR1. Mol Cell 8:983–993

    Article  CAS  PubMed  Google Scholar 

  33. Therrien M, Michaud NR, Rubin GM, Morrison DK (1996) KSR modulates signal propagation within the MAPK cascade. Genes Dev 10:2684–2695

    Article  CAS  PubMed  Google Scholar 

  34. Stewart S, Sundaram M, Zhang Y, Lee J, Han M, Guan KL (1999) Kinase suppressor of Ras forms a multiprotein signaling complex and modulates MEK localization. Mol Cell Biol 19:5523–5534

    CAS  PubMed  Google Scholar 

  35. Ory S, Zhou M, Conrads TP, Veenstra TD, Morrison DK (2003) Protein phosphatase 2A positively regulates Ras signaling by dephosphorylating KSR1 and Raf-1 on critical 14-3-3 binding sites. Curr Biol 13:1356–1364

    Article  CAS  PubMed  Google Scholar 

  36. Yu W, Fantl WJ, Harrowe G, Williams LT (1998) Regulation of the MAP kinase pathway by mammalian Ksr through direct interaction with MEK and ERK. Curr Biol 8:56–64

    Article  CAS  PubMed  Google Scholar 

  37. Lozano J, Xing R, Cai Z, Jensen HL, Trempus C, Mark W, Cannon R, Kolesnick R (2003) Deficiency of kinase suppressor of Ras1 prevents oncogenic ras signaling in mice. Cancer Res 63:4232–4238

    CAS  PubMed  Google Scholar 

  38. Nguyen A, Burack WR, Stock JL, Kortum R, Chaika OV, Afkarian M, Muller WJ, Murphy KM, Morrison DK, Lewis RE, McNeish J, Shaw AS (2002) Kinase suppressor of Ras (KSR) is a scaffold which facilitates mitogen-activated protein kinase activation in vivo. Mol Cell Biol 22:3035–3045

    Article  CAS  PubMed  Google Scholar 

  39. Costanzo-Garvey DL, Pfluger PT, Dougherty MK, Stock JL, Boehm M, Chaika O, Fernandez MR, Fisher K, Kortum RL, Hong EG, Jun JY, Ko HJ, Schreiner A, Volle DJ, Treece T, Swift AL, Winer M, Chen D, Wu M, Leon LR, Shaw AS, McNeish J, Kim JK, Morrison DK, Tschop MH, Lewis RE (2009) KSR2 is an essential regulator of AMP kinase, energy expenditure, and insulin sensitivity. Cell Metab 10:366–378

    Article  CAS  PubMed  Google Scholar 

  40. Dougherty MK, Ritt DA, Zhou M, Specht SI, Monson DM, Veenstra TD, Morrison DK (2009) KSR2 is a calcineurin substrate that promotes ERK cascade activation in response to calcium signals. Mol Cell 34:652–662

    Article  CAS  PubMed  Google Scholar 

  41. Brommage R, Desai U, Revelli JP, Donoviel DB, Fontenot GK, Dacosta CM, Smith DD, Kirkpatrick LL, Coker KJ, Donoviel MS, Eberhart DE, Holt KH, Kelly MR, Paradee WJ, Philips AV, Platt KA, Suwanichkul A, Hansen GM, Sands AT, Zambrowicz BP, Powell DR (2008) High-throughput screening of mouse knockout lines identifies true lean and obese phenotypes. Obesity 16:2362–2367

    Article  CAS  PubMed  Google Scholar 

  42. Hibino K, Shibata T, Yanagida T, Sako Y (2009) A RasGTP-induced conformational change in C-RAF is essential for accurate molecular recognition. Biophys J 97:1277–1287

    Article  CAS  PubMed  Google Scholar 

  43. Rommel C, Radziwill G, Lovric J, Noeldeke J, Heinicke T, Jones D, Aitken A, Moelling K (1996) Activated Ras displaces 14-3-3 protein from the amino terminus of c-Raf-1. Oncogene 12:609–619

    CAS  PubMed  Google Scholar 

  44. Leevers SJ, Paterson HF, Marshall CJ (1994) Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 369:411–414

    Article  CAS  PubMed  Google Scholar 

  45. Stokoe D, Macdonald SG, Cadwallader K, Symons M, Hancock JF (1994) Activation of Raf as a result of recruitment to the plasma membrane. Science 264:1463–1467

    Article  CAS  PubMed  Google Scholar 

  46. Marais R, Light Y, Paterson HF, Marshall CJ (1995) Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation. EMBO J 14:3136–3145

    CAS  PubMed  Google Scholar 

  47. Marais R, Light Y, Paterson HF, Mason CS, Marshall CJ (1997) Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic ras and tyrosine kinases. J Biol Chem 272:4378–4383

    Article  CAS  PubMed  Google Scholar 

  48. Roy S, McPherson RA, Apolloni A, Yan J, Lane A, Clyde-Smith J, Hancock JF (1998) 14-3-3 facilitates Ras-dependent Raf-1 activation in vitro and in vivo. Mol Cell Biol 18:3947–3955

    CAS  PubMed  Google Scholar 

  49. Brummer T, Martin P, Herzog S, Misawa Y, Daly RJ, Reth M (2006) Functional analysis of the regulatory requirements of B-Raf and the B-Raf(V600E) oncoprotein. Oncogene 25:6262–6276

    Article  CAS  PubMed  Google Scholar 

  50. Murakoshi H, Iino R, Kobayashi T, Fujiwara T, Ohshima C, Yoshimura A, Kusumi A (2004) Single-molecule imaging analysis of Ras activation in living cells. Proc Natl Acad Sci USA 101:7317–7322

    Article  CAS  PubMed  Google Scholar 

  51. Eisenberg S, Shvartsman DE, Ehrlich M, Henis YI (2006) Clustering of raft-associated proteins in the external membrane leaflet modulates internal leaflet H-ras diffusion and signaling. Mol Cell Biol 26:7190–7200

    Article  CAS  PubMed  Google Scholar 

  52. Niv H, Gutman O, Kloog Y, Henis YI (2002) Activated K-Ras and H-Ras display different interactions with saturable nonraft sites at the surface of live cells. J Cell Biol 157:865–872

    Article  CAS  PubMed  Google Scholar 

  53. Plowman SJ, Ariotti N, Goodall A, Parton RG, Hancock JF (2008) Electrostatic interactions positively regulate K-Ras nanocluster formation and function. Mol Cell Biol 28:4377–4385

    Article  CAS  PubMed  Google Scholar 

  54. Prior IA, Harding A, Yan J, Sluimer J, Parton RG, Hancock JF (2001) GTP-dependent segregation of H-ras from lipid rafts is required for biological activity. Nat Cell Biol 3:368–375

    Article  CAS  PubMed  Google Scholar 

  55. Hancock JF, Parton RG (2005) Ras plasma membrane signalling platforms. Biochem J 389:1–11

    Article  CAS  PubMed  Google Scholar 

  56. Plowman SJ, Muncke C, Parton RG, Hancock JF (2005) H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton. Proc Natl Acad Sci USA 102:15500–15505

    Article  CAS  PubMed  Google Scholar 

  57. Prior IA, Muncke C, Parton RG, Hancock JF (2003) Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J Cell Biol 160:165–170

    Article  CAS  PubMed  Google Scholar 

  58. Belanis L, Plowman SJ, Rotblat B, Hancock JF, Kloog Y (2008) Galectin-1 is a novel structural component and a major regulator of h-ras nanoclusters. Mol Biol Cell 19:1404–1414

    Article  CAS  PubMed  Google Scholar 

  59. Shalom-Feuerstein R, Plowman SJ, Rotblat B, Ariotti N, Tian T, Hancock JF, Kloog Y (2008) K-ras nanoclustering is subverted by overexpression of the scaffold protein galectin-3. Cancer Res 68:6608–6616

    Article  CAS  PubMed  Google Scholar 

  60. Tian T, Harding A, Inder K, Plowman S, Parton RG, Hancock JF (2007) Plasma membrane nanoswitches generate high-fidelity Ras signal transduction. Nat Cell Biol 9:905–914

    Article  CAS  PubMed  Google Scholar 

  61. Casar B, Arozarena I, Sanz-Moreno V, Pinto A, Agudo-Ibanez L, Marais R, Lewis RE, Berciano MT, Crespo P (2009) Ras subcellular localization defines extracellular signal-regulated kinase 1 and 2 substrate specificity through distinct utilization of scaffold proteins. Mol Cell Biol 29:1338–1353

    Article  CAS  PubMed  Google Scholar 

  62. Das J, Ho M, Zikherman J, Govern C, Yang M, Weiss A, Chakraborty AK, Roose JP (2009) Digital signaling and hysteresis characterize ras activation in lymphoid cells. Cell 136:337–351

    Article  CAS  PubMed  Google Scholar 

  63. Groves JT, Kuriyan J (2010) Molecular mechanisms in signal transduction at the membrane. Nat Struct Mol Biol 17:659–665

    Article  CAS  PubMed  Google Scholar 

  64. Harding A, Tian T, Westbury E, Frische E, Hancock JF (2005) Subcellular localization determines MAP kinase signal output. Curr Biol 15:869–873

    Article  CAS  PubMed  Google Scholar 

  65. Inder K, Harding A, Plowman SJ, Philips MR, Parton RG, Hancock JF (2008) Activation of the MAPK module from different spatial locations generates distinct system outputs. Mol Biol Cell 19:4776–4784

    Article  CAS  PubMed  Google Scholar 

  66. Gomez GA, Daniotti JL (2005) H-Ras dynamically interacts with recycling endosomes in CHO-K1 cells: involvement of Rab5 and Rab11 in the trafficking of H-Ras to this pericentriolar endocytic compartment. J Biol Chem 280:34997–35010

    Article  CAS  PubMed  Google Scholar 

  67. Roy S, Wyse B, Hancock JF (2002) H-Ras signaling and K-Ras signaling are differentially dependent on endocytosis. Mol Cell Biol 22:5128–5140

    Article  CAS  PubMed  Google Scholar 

  68. Jiang X, Sorkin A (2002) Coordinated traffic of Grb2 and Ras during epidermal growth factor receptor endocytosis visualized in living cells. Mol Biol Cell 13:1522–1535

    Article  CAS  PubMed  Google Scholar 

  69. Bivona TG, Perez De Castro I, Ahearn IM, Grana TM, Chiu VK, Lockyer PJ, Cullen PJ, Pellicer A, Cox AD, Philips MR (2003) Phospholipase Cgamma activates Ras on the Golgi apparatus by means of RasGRP1. Nature 424:694–698

    Article  CAS  PubMed  Google Scholar 

  70. Chiu VK, Bivona T, Hach A, Sajous JB, Silletti J, Wiener H, Johnson RL 2nd, Cox AD, Philips MR (2002) Ras signalling on the endoplasmic reticulum and the Golgi. Nat Cell Biol 4:343–350

    CAS  PubMed  Google Scholar 

  71. Perez de Castro I, Bivona TG, Philips MR, Pellicer A (2004) Ras activation in Jurkat T cells following low-grade stimulation of the T-cell receptor is specific to N-Ras and occurs only on the Golgi apparatus. Mol Cell Biol 24:3485–3496

    Article  PubMed  CAS  Google Scholar 

  72. Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R, Ludlam MJ, Stokoe D, Gloor SL, Vigers G, Morales T, Aliagas I, Liu B, Sideris S, Hoeflich KP, Jaiswal BS, Seshagiri S, Koeppen H, Belvin M, Friedman LS, Malek S (2010) RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464:431–435

    Article  CAS  PubMed  Google Scholar 

  73. Anselmo AN, Bumeister R, Thomas JM, White MA (2002) Critical contribution of linker proteins to Raf kinase activation. J Biol Chem 277:5940–5943

    Article  CAS  PubMed  Google Scholar 

  74. Douziech M, Sahmi M, Laberge G, Therrien M (2006) A KSR/CNK complex mediated by HYP, a novel SAM domain-containing protein, regulates RAS-dependent RAF activation in Drosophila. Genes Dev 20:807–819

    Article  CAS  PubMed  Google Scholar 

  75. Roignant JY, Hamel S, Janody F, Treisman JE (2006) The novel SAM domain protein Aveugle is required for Raf activation in the Drosophila EGF receptor signaling pathway. Genes Dev 20:795–806

    Article  CAS  PubMed  Google Scholar 

  76. Therrien M, Wong AM, Rubin GM (1998) CNK, a RAF-binding multidomain protein required for RAS signaling. Cell 95:343–353

    Article  CAS  PubMed  Google Scholar 

  77. Rajakulendran T, Sahmi M, Kurinov I, Tyers M, Therrien M, Sicheri F (2008) CNK and HYP form a discrete dimer by their SAM domains to mediate RAF kinase signaling. Proc Natl Acad Sci USA 105:2836–2841

    Article  CAS  PubMed  Google Scholar 

  78. Douziech M, Roy F, Laberge G, Lefrancois M, Armengod AV, Therrien M (2003) Bimodal regulation of RAF by CNK in Drosophila. EMBO J 22:5068–5078

    Article  CAS  PubMed  Google Scholar 

  79. Laberge G, Douziech M, Therrien M (2005) Src42 binding activity regulates Drosophila RAF by a novel CNK-dependent derepression mechanism. EMBO J 24:487–498

    Article  CAS  PubMed  Google Scholar 

  80. Lanigan TM, Liu A, Huang YZ, Mei L, Margolis B, Guan KL (2003) Human homologue of Drosophila CNK interacts with Ras effector proteins Raf and Rlf. FASEB J 17:2048–2060

    Article  CAS  PubMed  Google Scholar 

  81. Ziogas A, Moelling K, Radziwill G (2005) CNK1 is a scaffold protein that regulates Src-mediated Raf-1 activation. J Biol Chem 280:24205–24211

    Article  CAS  PubMed  Google Scholar 

  82. Sieburth DS, Sun Q, Han M (1998) SUR-8, a conserved Ras-binding protein with leucine-rich repeats, positively regulates Ras-mediated signaling in C. elegans. Cell 94:119–130

    Article  CAS  PubMed  Google Scholar 

  83. Dai P, Xiong WC, Mei L (2006) Erbin inhibits RAF activation by disrupting the sur-8-Ras-Raf complex. J Biol Chem 281:927–933

    Article  CAS  PubMed  Google Scholar 

  84. Li W, Han M, Guan KL (2000) The leucine-rich repeat protein SUR-8 enhances MAP kinase activation and forms a complex with Ras and Raf. Genes Dev 14:895–900

    CAS  PubMed  Google Scholar 

  85. Rodriguez-Viciana P, Oses-Prieto J, Burlingame A, Fried M, McCormick F (2006) A phosphatase holoenzyme comprised of Shoc2/Sur8 and the catalytic subunit of PP1 functions as an M-Ras effector to modulate Raf activity. Mol Cell 22:217–230

    Article  CAS  PubMed  Google Scholar 

  86. Matsunaga-Udagawa R, Fujita Y, Yoshiki S, Terai K, Kamioka Y, Kiyokawa E, Yugi K, Aoki K, Matsuda M (2010) The scaffold protein Shoc2/SUR-8 accelerates the interaction of Ras and Raf. J Biol Chem 285:7818–7826

    Article  CAS  PubMed  Google Scholar 

  87. Yoshiki S, Matsunaga-Udagawa R, Aoki K, Kamioka Y, Kiyokawa E, Matsuda M (2010) Ras and calcium signaling pathways converge at Raf1 via the Shoc2 scaffold protein. Mol Biol Cell 21:1088–1096

    Article  CAS  PubMed  Google Scholar 

  88. Cordeddu V, Di Schiavi E, Pennacchio LA, Ma’ayan A, Sarkozy A, Fodale V, Cecchetti S, Cardinale A, Martin J, Schackwitz W, Lipzen A, Zampino G, Mazzanti L, Digilio MC, Martinelli S, Flex E, Lepri F, Bartholdi D, Kutsche K, Ferrero GB, Anichini C, Selicorni A, Rossi C, Tenconi R, Zenker M, Merlo D, Dallapiccola B, Iyengar R, Bazzicalupo P, Gelb BD, Tartaglia M (2009) Mutation of SHOC2 promotes aberrant protein N-myristoylation and causes Noonan-like syndrome with loose anagen hair. Nat Genet 41:1022–1026

    Article  CAS  PubMed  Google Scholar 

  89. Casar B, Pinto A, Crespo P (2008) Essential role of ERK dimers in the activation of cytoplasmic but not nuclear substrates by ERK-scaffold complexes. Mol Cell 31:708–721

    Article  CAS  PubMed  Google Scholar 

  90. Ren JG, Li Z, Sacks DB (2007) IQGAP1 modulates activation of B-Raf. Proc Natl Acad Sci USA 104:10465–10469

    Article  CAS  PubMed  Google Scholar 

  91. Roy M, Li Z, Sacks DB (2004) IQGAP1 binds ERK2 and modulates its activity. J Biol Chem 279:17329–17337

    Article  CAS  PubMed  Google Scholar 

  92. Roy M, Li Z, Sacks DB (2005) IQGAP1 is a scaffold for mitogen-activated protein kinase signaling. Mol Cell Biol 25:7940–7952

    Article  CAS  PubMed  Google Scholar 

  93. Ishibe S, Joly D, Liu ZX, Cantley LG (2004) Paxillin serves as an ERK-regulated scaffold for coordinating FAK and Rac activation in epithelial morphogenesis. Mol Cell 16:257–267

    Article  CAS  PubMed  Google Scholar 

  94. Ishibe S, Joly D, Zhu X, Cantley LG (2003) Phosphorylation-dependent paxillin-ERK association mediates hepatocyte growth factor-stimulated epithelial morphogenesis. Mol Cell 12:1275–1285

    Article  CAS  PubMed  Google Scholar 

  95. Yeung K, Janosch P, McFerran B, Rose DW, Mischak H, Sedivy JM, Kolch W (2000) Mechanism of suppression of the Raf/MEK/extracellular signal-regulated kinase pathway by the raf kinase inhibitor protein. Mol Cell Biol 20:3079–3085

    Article  CAS  PubMed  Google Scholar 

  96. Yeung K, Seitz T, Li S, Janosch P, McFerran B, Kaiser C, Fee F, Katsanakis KD, Rose DW, Mischak H, Sedivy JM, Kolch W (1999) Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature 401:173–177

    Article  CAS  PubMed  Google Scholar 

  97. Trakul N, Menard RE, Schade GR, Qian Z, Rosner MR (2005) Raf kinase inhibitory protein regulates Raf-1 but not B-Raf kinase activation. J Biol Chem 280:24931–24940

    Article  CAS  PubMed  Google Scholar 

  98. Park S, Yeung ML, Beach S, Shields JM, Yeung KC (2005) RKIP downregulates B-Raf kinase activity in melanoma cancer cells. Oncogene 24:3535–3540

    Article  CAS  PubMed  Google Scholar 

  99. Park S, Rath O, Beach S, Xiang X, Kelly SM, Luo Z, Kolch W, Yeung KC (2006) Regulation of RKIP binding to the N-region of the Raf-1 kinase. FEBS Lett 580:6405–6412

    Article  CAS  PubMed  Google Scholar 

  100. Rath O, Park S, Tang HH, Banfield MJ, Brady RL, Lee YC, Dignam JD, Sedivy JM, Kolch W, Yeung KC (2008) The RKIP (Raf-1 Kinase Inhibitor Protein) conserved pocket binds to the phosphorylated N-region of Raf-1 and inhibits the Raf-1-mediated activated phosphorylation of MEK. Cell Signal 20:935–941

    Article  CAS  PubMed  Google Scholar 

  101. Corbit KC, Trakul N, Eves EM, Diaz B, Marshall M, Rosner MR (2003) Activation of Raf-1 signaling by protein kinase C through a mechanism involving Raf kinase inhibitory protein. J Biol Chem 278:13061–13068

    Article  CAS  PubMed  Google Scholar 

  102. Shin SY, Rath O, Choo SM, Fee F, McFerran B, Kolch W, Cho KH (2009) Positive- and negative-feedback regulations coordinate the dynamic behavior of the Ras-Raf-MEK-ERK signal transduction pathway. J Cell Sci 122:425–435

    Article  CAS  PubMed  Google Scholar 

  103. Dhillon AS, Pollock C, Steen H, Shaw PE, Mischak H, Kolch W (2002) Cyclic AMP-dependent kinase regulates Raf-1 kinase mainly by phosphorylation of serine 259. Mol Cell Biol 22:3237–3246

    Article  CAS  PubMed  Google Scholar 

  104. Dougherty MK, Muller J, Ritt DA, Zhou M, Zhou XZ, Copeland TD, Conrads TP, Veenstra TD, Lu KP, Morrison DK (2005) Regulation of Raf-1 by direct feedback phosphorylation. Mol Cell 17:215–224

    Article  CAS  PubMed  Google Scholar 

  105. Michaud NR, Fabian JR, Mathes KD, Morrison DK (1995) 14-3-3 is not essential for Raf-1 function: identification of Raf-1 proteins that are biologically activated in a 14-3-3- and Ras-independent manner. Mol Cell Biol 15:3390–3397

    CAS  PubMed  Google Scholar 

  106. Clark GJ, Drugan JK, Rossman KL, Carpenter JW, Rogers-Graham K, Fu H, Der CJ, Campbell SL (1997) 14-3-3 zeta negatively regulates raf-1 activity by interactions with the Raf-1 cysteine-rich domain. J Biol Chem 272:20990–20993

    Article  CAS  PubMed  Google Scholar 

  107. Kobayashi T, Aoki Y, Niihori T, Cave H, Verloes A, Okamoto N, Kawame H, Fujiwara I, Takada F, Ohata T, Sakazume S, Ando T, Nakagawa N, Lapunzina P, Meneses AG, Gillessen-Kaesbach G, Wieczorek D, Kurosawa K, Mizuno S, Ohashi H, David A, Philip N, Guliyeva A, Narumi Y, Kure S, Tsuchiya S, Matsubara Y (2010) Molecular and clinical analysis of RAF1 in Noonan syndrome and related disorders: dephosphorylation of serine 259 as the essential mechanism for mutant activation. Hum Mutat 31:284–294

    Article  CAS  PubMed  Google Scholar 

  108. Pandit B, Sarkozy A, Pennacchio LA, Carta C, Oishi K, Martinelli S, Pogna EA, Schackwitz W, Ustaszewska A, Landstrom A, Bos JM, Ommen SR, Esposito G, Lepri F, Faul C, Mundel P, Lopez Siguero JP, Tenconi R, Selicorni A, Rossi C, Mazzanti L, Torrente I, Marino B, Digilio MC, Zampino G, Ackerman MJ, Dallapiccola B, Tartaglia M, Gelb BD (2007) Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nat Genet 39:1007–1012

    Article  CAS  PubMed  Google Scholar 

  109. Guan KL, Figueroa C, Brtva TR, Zhu T, Taylor J, Barber TD, Vojtek AB (2000) Negative regulation of the serine/threonine kinase B-Raf by Akt. J Biol Chem 275:27354–27359

    CAS  PubMed  Google Scholar 

  110. Rommel C, Clarke BA, Zimmermann S, Nunez L, Rossman R, Reid K, Moelling K, Yancopoulos GD, Glass DJ (1999) Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt. Science 286:1738–1741

    Article  CAS  PubMed  Google Scholar 

  111. Zimmermann S, Moelling K (1999) Phosphorylation and regulation of Raf by Akt (protein kinase B). Science 286:1741–1744

    Article  CAS  PubMed  Google Scholar 

  112. Jaumot M, Hancock JF (2001) Protein phosphatases 1 and 2A promote Raf-1 activation by regulating 14-3-3 interactions. Oncogene 20:3949–3958

    Article  CAS  PubMed  Google Scholar 

  113. Yip-Schneider MT, Miao W, Lin A, Barnard DS, Tzivion G, Marshall MS (2000) Regulation of the Raf-1 kinase domain by phosphorylation and 14-3-3 association. Biochem J 351:151–159

    Article  CAS  PubMed  Google Scholar 

  114. Tzivion G, Luo Z, Avruch J (1998) A dimeric 14-3-3 protein is an essential cofactor for Raf kinase activity. Nature 394:88–92

    Article  CAS  PubMed  Google Scholar 

  115. Mischak H, Seitz T, Janosch P, Eulitz M, Steen H, Schellerer M, Philipp A, Kolch W (1996) Negative regulation of Raf-1 by phosphorylation of serine 621. Mol Cell Biol 16:5409–5418

    CAS  PubMed  Google Scholar 

  116. Noble C, Mercer K, Hussain J, Carragher L, Giblett S, Hayward R, Patterson C, Marais R, Pritchard CA (2008) CRAF autophosphorylation of serine 621 is required to prevent its proteasome-mediated degradation. Mol Cell 31:862–872

    Article  CAS  PubMed  Google Scholar 

  117. Garnett MJ, Rana S, Paterson H, Barford D, Marais R (2005) Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization. Mol Cell 20:963–969

    Article  CAS  PubMed  Google Scholar 

  118. Rajakulendran T, Sahmi M, Lefrancois M, Sicheri F, Therrien M (2009) A dimerization-dependent mechanism drives RAF catalytic activation. Nature 461:542–545

    Article  CAS  PubMed  Google Scholar 

  119. Rushworth LK, Hindley AD, O’Neill E, Kolch W (2006) Regulation and role of Raf-1/B-Raf heterodimerization. Mol Cell Biol 26:2262–2272

    Article  CAS  PubMed  Google Scholar 

  120. Weber CK, Slupsky JR, Kalmes HA, Rapp UR (2001) Active Ras induces heterodimerization of cRaf and BRaf. Cancer Res 61:3595–3598

    CAS  PubMed  Google Scholar 

  121. Ritt DA, Monson DM, Specht SI, Morrison DK (2010) Impact of feedback phosphorylation and Raf heterodimerization on normal and mutant B-Raf signaling. Mol Cell Biol 30:806–819

    Article  CAS  PubMed  Google Scholar 

  122. Dhillon AS, Yip YY, Grindlay GJ, Pakay JL, Dangers M, Hillmann M, Clark W, Pitt A, Mischak H, Kolch W (2009) The C-terminus of Raf-1 acts as a 14-3-3-dependent activation switch. Cell Signal 21:1645–1651

    Article  CAS  PubMed  Google Scholar 

  123. Chong H, Lee J, Guan KL (2001) Positive and negative regulation of Raf kinase activity and function by phosphorylation. EMBO J 20:3716–3727

    Article  CAS  PubMed  Google Scholar 

  124. Diaz B, Barnard D, Filson A, MacDonald S, King A, Marshall M (1997) Phosphorylation of Raf-1 serine 338-serine 339 is an essential regulatory event for Ras-dependent activation and biological signaling. Mol Cell Biol 17:4509–4516

    CAS  PubMed  Google Scholar 

  125. Goetz CA, O’Neil JJ, Farrar MA (2003) Membrane localization, oligomerization, and phosphorylation are required for optimal raf activation. J Biol Chem 278:51184–51189

    Article  CAS  PubMed  Google Scholar 

  126. Mason CS, Springer CJ, Cooper RG, Superti-Furga G, Marshall CJ, Marais R (1999) Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO J 18:2137–2148

    Article  CAS  PubMed  Google Scholar 

  127. von Kriegsheim A, Pitt A, Grindlay GJ, Kolch W, Dhillon AS (2006) Regulation of the Raf-MEK-ERK pathway by protein phosphatase 5. Nat Cell Biol 8:1011–1016

    Article  CAS  Google Scholar 

  128. Chaudhary A, King WG, Mattaliano MD, Frost JA, Diaz B, Morrison DK, Cobb MH, Marshall MS, Brugge JS (2000) Phosphatidylinositol 3-kinase regulates Raf1 through Pak phosphorylation of serine 338. Curr Biol 10:551–554

    Article  CAS  PubMed  Google Scholar 

  129. King AJ, Sun H, Diaz B, Barnard D, Miao W, Bagrodia S, Marshall MS (1998) The protein kinase Pak3 positively regulates Raf-1 activity through phosphorylation of serine 338. Nature 396:180–183

    Article  CAS  PubMed  Google Scholar 

  130. Wu X, Carr HS, Dan I, Ruvolo PP, Frost JA (2008) p21 activated kinase 5 activates Raf-1 and targets it to mitochondria. J Cell Biochem 105:167–175

    Article  CAS  PubMed  Google Scholar 

  131. Zang M, Hayne C, Luo Z (2002) Interaction between active Pak1 and Raf-1 is necessary for phosphorylation and activation of Raf-1. J Biol Chem 277:4395–4405

    Article  CAS  PubMed  Google Scholar 

  132. Chiloeches A, Mason CS, Marais R (2001) S338 phosphorylation of Raf-1 is independent of phosphatidylinositol 3-kinase and Pak3. Mol Cell Biol 21:2423–2434

    Article  CAS  PubMed  Google Scholar 

  133. Zang M, Gong J, Luo L, Zhou J, Xiang X, Huang W, Huang Q, Luo X, Olbrot M, Peng Y, Chen C, Luo Z (2008) Characterization of Ser338 phosphorylation for Raf-1 activation. J Biol Chem 283:31429–31437

    Article  CAS  PubMed  Google Scholar 

  134. Ritt DA, Zhou M, Conrads TP, Veenstra TD, Copeland TD, Morrison DK (2007) CK2 is a component of the KSR1 scaffold complex that contributes to Raf kinase activation. Curr Biol 17:179–184

    Article  CAS  PubMed  Google Scholar 

  135. Fabian JR, Daar IO, Morrison DK (1993) Critical tyrosine residues regulate the enzymatic and biological activity of Raf-1 kinase. Mol Cell Biol 13:7170–7179

    CAS  PubMed  Google Scholar 

  136. Zhang BH, Guan KL (2000) Activation of B-Raf kinase requires phosphorylation of the conserved residues Thr598 and Ser601. EMBO J 19:5429–5439

    Article  CAS  PubMed  Google Scholar 

  137. Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, Jones CM, Marshall CJ, Springer CJ, Barford D, Marais R (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116:855–867

    Article  CAS  PubMed  Google Scholar 

  138. Balan V, Leicht DT, Zhu J, Balan K, Kaplun A, Singh-Gupta V, Qin J, Ruan H, Comb MJ, Tzivion G (2006) Identification of novel in vivo Raf-1 phosphorylation sites mediating positive feedback Raf-1 regulation by extracellular signal-regulated kinase. Mol Biol Cell 17:1141–1153

    Article  CAS  PubMed  Google Scholar 

  139. Farrar MA, Alberol I, Perlmutter RM (1996) Activation of the Raf-1 kinase cascade by coumermycin-induced dimerization. Nature 383:178–181

    Article  CAS  PubMed  Google Scholar 

  140. Luo Z, Tzivion G, Belshaw PJ, Vavvas D, Marshall M, Avruch J (1996) Oligomerization activates c-Raf-1 through a Ras-dependent mechanism. Nature 383:181–185

    Article  CAS  PubMed  Google Scholar 

  141. Mizutani S, Inouye K, Koide H, Kaziro Y (2001) Involvement of B-Raf in Ras-induced Raf-1 activation. FEBS Lett 507:295–298

    Article  CAS  PubMed  Google Scholar 

  142. Wojnowski L, Stancato LF, Larner AC, Rapp UR, Zimmer A (2000) Overlapping and specific functions of Braf and Craf-1 proto-oncogenes during mouse embryogenesis. Mech Dev 91:97–104

    Article  CAS  PubMed  Google Scholar 

  143. Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N, Hussain J, Reis-Filho JS, Springer CJ, Pritchard C, Marais R (2010) Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140:209–221

    Article  CAS  PubMed  Google Scholar 

  144. Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N (2010) RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464:427–430

    Article  CAS  PubMed  Google Scholar 

  145. Inouye K, Mizutani S, Koide H, Kaziro Y (2000) Formation of the Ras dimer is essential for Raf-1 activation. J Biol Chem 275:3737–3740

    Article  CAS  PubMed  Google Scholar 

  146. Chadee DN, Xu D, Hung G, Andalibi A, Lim DJ, Luo Z, Gutmann DH, Kyriakis JM (2006) Mixed-lineage kinase 3 regulates B-Raf through maintenance of the B-Raf/Raf-1 complex and inhibition by the NF2 tumor suppressor protein. Proc Natl Acad Sci USA 103:4463–4468

    Article  CAS  PubMed  Google Scholar 

  147. Yasuda S, Kai M, Imai S, Takeishi K, Taketomi A, Toyota M, Kanoh H, Sakane F (2009) Diacylglycerol kinase eta augments C-Raf activity and B-Raf/C-Raf heterodimerization. J Biol Chem 284:29559–29570

    Article  CAS  PubMed  Google Scholar 

  148. Karreth FA, DeNicola GM, Winter SP, Tuveson DA (2009) C-Raf inhibits MAPK activation and transformation by B-Raf(V600E). Mol Cell 36:477–486

    Article  CAS  PubMed  Google Scholar 

  149. Huser M, Luckett J, Chiloeches A, Mercer K, Iwobi M, Giblett S, Sun XM, Brown J, Marais R, Pritchard C (2001) MEK kinase activity is not necessary for Raf-1 function. EMBO J 20:1940–1951

    Article  CAS  PubMed  Google Scholar 

  150. Mikula M, Schreiber M, Husak Z, Kucerova L, Ruth J, Wieser R, Zatloukal K, Beug H, Wagner EF, Baccarini M (2001) Embryonic lethality and fetal liver apoptosis in mice lacking the c-raf-1 gene. EMBO J 20:1952–1962

    Article  CAS  PubMed  Google Scholar 

  151. Niault T, Sobczak I, Meissl K, Weitsman G, Piazzolla D, Maurer G, Kern F, Ehrenreiter K, Hamerl M, Moarefi I, Leung T, Carugo O, Ng T, Baccarini M (2009) From autoinhibition to inhibition in trans: the Raf-1 regulatory domain inhibits Rok-alpha kinase activity. J Cell Biol 187:335–342

    Article  CAS  PubMed  Google Scholar 

  152. Ehrenreiter K, Piazzolla D, Velamoor V, Sobczak I, Small JV, Takeda J, Leung T, Baccarini M (2005) Raf-1 regulates Rho signaling and cell migration. J Cell Biol 168:955–964

    Article  CAS  PubMed  Google Scholar 

  153. Piazzolla D, Meissl K, Kucerova L, Rubiolo C, Baccarini M (2005) Raf-1 sets the threshold of Fas sensitivity by modulating Rok-alpha signaling. J Cell Biol 171:1013–1022

    Article  CAS  PubMed  Google Scholar 

  154. Ehrenreiter K, Kern F, Velamoor V, Meissl K, Galabova-Kovacs G, Sibilia M, Baccarini M (2009) Raf-1 addiction in Ras-induced skin carcinogenesis. Cancer Cell 16:149–160

    Article  CAS  PubMed  Google Scholar 

  155. O’Neill E, Rushworth L, Baccarini M, Kolch W (2004) Role of the kinase MST2 in suppression of apoptosis by the proto-oncogene product Raf-1. Science 306:2267–2270

    Article  PubMed  CAS  Google Scholar 

  156. O’Neill E, Kolch W (2005) Taming the Hippo: Raf-1 controls apoptosis by suppressing MST2/Hippo. Cell Cycle 4:365–367

    Article  PubMed  Google Scholar 

  157. Kilili GK, Kyriakis JM (2010) Mammalian Ste20-like kinase (Mst2) indirectly supports Raf-1/ERK pathway activity via maintenance of protein phosphatase-2A catalytic subunit levels and consequent suppression of inhibitory Raf-1 phosphorylation. J Biol Chem 285:15076–15087

    Article  CAS  PubMed  Google Scholar 

  158. Alavi AS, Acevedo L, Min W, Cheresh DA (2007) Chemoresistance of endothelial cells induced by basic fibroblast growth factor depends on Raf-1-mediated inhibition of the proapoptotic kinase, ASK1. Cancer Res 67:2766–2772

    Article  CAS  PubMed  Google Scholar 

  159. Chen J, Fujii K, Zhang L, Roberts T, Fu H (2001) Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK-ERK independent mechanism. Proc Natl Acad Sci USA 98:7783–7788

    Article  CAS  PubMed  Google Scholar 

  160. Yamaguchi O, Watanabe T, Nishida K, Kashiwase K, Higuchi Y, Takeda T, Hikoso S, Hirotani S, Asahi M, Taniike M, Nakai A, Tsujimoto I, Matsumura Y, Miyazaki J, Chien KR, Matsuzawa A, Sadamitsu C, Ichijo H, Baccarini M, Hori M, Otsu K (2004) Cardiac-specific disruption of the c-raf-1 gene induces cardiac dysfunction and apoptosis. J Clin Invest 114:937–943

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the Canadian Institutes for Health Research and from the Canadian Cancer Society to M.T. and F.S. T.R. is a Research Fellow of The Terry Fox Foundation. F.S. holds a Canada Research Chair in Structural Biology of Signal Transduction, and M.T. is a Canada Research Chair (Tier II) in Intracellular Signaling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Therrien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Udell, C.M., Rajakulendran, T., Sicheri, F. et al. Mechanistic principles of RAF kinase signaling. Cell. Mol. Life Sci. 68, 553–565 (2011). https://doi.org/10.1007/s00018-010-0520-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0520-6

Keywords

Navigation