Skip to main content

Advertisement

Log in

Tricellulin forms homomeric and heteromeric tight junctional complexes

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Sealing of the paracellular cleft by tight junctions is of central importance for epithelia and endothelia to function as efficient barriers between the extracellular space and the inner milieu. Occludin and claudins represent the major tight junction components involved in establishing this barrier function. A special situation emerges at sites where three cells join together. Tricellulin, a recently identified tetraspan protein concentrated at tricellular contacts, was reported to organize tricellular as well as bicellular tight junctions. Here we show that in MDCK cells, the tricellulin C-terminus is important for the basolateral translocation of tricellulin, whereas the N-terminal domain appears to be involved in directing tricellulin to tricellular contacts. In this respect, identification of homomeric tricellulin-tricellulin and of heteromeric tricellulin-occludin complexes extends a previously published model and suggests that tricellulin and occludin are transported together to the edges of elongating bicellular junctions and get separated when tricellular contacts are formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Staehelin LA (1973) Further observation on the fine structure of freeze-cleaved tight junctions. J Cell Sci 13:763–786

    CAS  PubMed  Google Scholar 

  2. Schulzke JD, Fromm M (2009) Tight junction: molecular structure meets function. Ann NY Acad Sci 1165:1–6

    Article  CAS  PubMed  Google Scholar 

  3. Furuse M, Tsukita S (2006) Claudins in occluding junctions of humans and flies. Trends Cell Biol 16:181–188

    Article  CAS  PubMed  Google Scholar 

  4. Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S (2005) Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol 171:939–945

    Article  CAS  PubMed  Google Scholar 

  5. Martin-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscella P, Panzeri C, Stoppacciaro A, Ruco L, Villa A, Simmons D, Dejana E (1998) Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 142:117–127

    Article  CAS  PubMed  Google Scholar 

  6. Cohen CJ, Shieh JT, Pickles RJ, Okegawa T, Hsieh JT, Bergelson JM (2001) The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci USA 98:15191–15196

    Article  CAS  PubMed  Google Scholar 

  7. Tsukita S, Furuse M, Itoh M (2001) Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2:285–293

    Article  CAS  PubMed  Google Scholar 

  8. Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123:1777–1788

    Article  CAS  PubMed  Google Scholar 

  9. Saitou M, Furuse M, Sasaki H, Schulzke JD, Fromm M, Takano H, Noda T, Tsukita S (2000) Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 11:4131–4142

    CAS  PubMed  Google Scholar 

  10. Schulzke JD, Gitter AH, Mankertz J, Spiegel S, Seidler U, Amasheh S, Saitou M, Tsukita S, Fromm M (2005) Epithelial transport and barrier function in occludin-deficient mice. Biochim Biophys Acta 1669:34–42

    Article  CAS  PubMed  Google Scholar 

  11. Krause G, Winkler L, Mueller SL, Haselhoff RF, Piontek J, Blasig IE (2008) Structure and function of claudins. Biochim Biophys Acta 1778:631–645

    CAS  PubMed  Google Scholar 

  12. Furuse M, Hata M, Furuse K, Yoshida A, Sugitani Y, Noda T, Kubo A, Tsukita S (2002) Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol 156:1099–1111

    Article  CAS  PubMed  Google Scholar 

  13. Amasheh S, Schmidt T, Mahn M, Florian P, Mankertz J, Tavalali S, Gitter AH, Schulzke JD, Fromm M (2005) Contribution of claudin-5 to barrier properties in tight junctions of epithelial cells. Cell Tissue Res 321:89–96

    Article  CAS  PubMed  Google Scholar 

  14. Wen H, Watry DD, Marcondes MC, Fox HS (2004) Selective decrease in paracellular conductance of tight junctions: role of the first extracellular domain of claudin-5. Mol Cell Biol 24:8408–8417

    Article  CAS  PubMed  Google Scholar 

  15. Amasheh S, Meiri N, Gitter AH, Schöneberg T, Mankertz J, Schulzke JD, Fromm M (2002) Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J Cell Sci 115:4969–4976

    Article  CAS  PubMed  Google Scholar 

  16. Günzel D, Amasheh S, Pfaffenbach S, Richter JF, Kausalya PJ, Hunziker W, Fromm M (2009) Claudin-16 affects transcellular Cl secretion in MDCK cells. J Physiol (Lond) 587:3777–3793

    Article  Google Scholar 

  17. Hou J, Paul DL, Goodenough DA (2005) Paracellin-1 and the modulation of the ion selectivity of tight junctions. J Cell Sci 118:5109–5118

    Article  CAS  PubMed  Google Scholar 

  18. Simon DB, Lu Y, Choate KA, Velazquez H, Al-Sabban E, Praga M, Casari G, Bettinelli A, Colussi G, Rodriguez-Soriano J, McCredie D, Milford D, Sanjad S, Lifton RP (1999) Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285:103–106

    Article  CAS  PubMed  Google Scholar 

  19. Krause G, Winkler L, Piehl C, Blasig IE, Piontek J, Müller SL (2009) Structure and function of extracellular claudin domains. Ann NY Acad Sci 1165:34–43

    Article  CAS  PubMed  Google Scholar 

  20. Piontek J, Winkler L, Wolburg H, Müller SL, Zuleger N, Piehl C, Wiesner B, Krause G, Blasig IE (2008) Formation of tight junction: determinants of homophilic interaction between classic claudins. FASEB J 22:146–158

    Article  CAS  PubMed  Google Scholar 

  21. Mrsny RJ, Brown GT, Gerner-Smidt K, Buret AG, Meddings JB, Quan C, Koval M, Nusrat A (2008) A key claudin extracellular loop domain is critical for epithelial barrier integrity. Am J Pathol 172:905–915

    Article  CAS  PubMed  Google Scholar 

  22. Krug SM, Amasheh S, Richter JF, Milatz S, Günzel D, Westphal JK, Huber O, Schulzke JD, Fromm M (2009) Tricellulin forms a barrier to macromolecules in tricellular tight junctions without affecting ion permeability. Mol Biol Cell 20:3713–3724

    Article  CAS  PubMed  Google Scholar 

  23. Dörfel MJ, Westphal JK, Huber O (2009) Differential phosphorylation of occludin and tricellulin by CK2 and CK1. Ann NY Acad Sci 1165:69–73

    Article  PubMed  Google Scholar 

  24. Ikenouchi J, Sasaki H, Tsukita S, Furuse M, Tsukita S (2008) Loss of occludin affects tricellular localization of tricellulin. Mol Biol Cell 19:4687–4693

    Article  CAS  PubMed  Google Scholar 

  25. Schlüter H, Moll I, Wolburg H, Franke WW (2007) The different structures containing tight junction proteins in epidermal and other stratified epithelial cells, including squamous cell metaplasia. Eur J Cell Biol 86:645–655

    Article  PubMed  Google Scholar 

  26. González-Mariscal L, Hernández S, Vega J (2008) Inventions designed to enhance drug delivery across epithelial and endothelial cells through the paracellular pathway. Recent Pat Drug Deliv Formul 2:145–176

    Article  PubMed  Google Scholar 

  27. Chishti MS, Bhatti A, Tamim S, Lee K, McDonald ML, Leal SM, Ahmad W (2008) Splice-site mutations in the TRIC gene underlie autosomal recessive nonsyndromic hearing impairment in Pakistani families. J Hum Genet 53:101–105

    Article  CAS  PubMed  Google Scholar 

  28. Ramzan K, Shaikh RS, Ahmad J, Khan SN, Riazuddin S, Ahmed ZM, Friedman TB, Wilcox ER, Riazuddin S (2005) DFNB48, a new nonsyndromic recessive deafness locus, maps to chromosome 15q23–q25.1. Hum Genet 116:407–412

    Article  PubMed  Google Scholar 

  29. Riazuddin S, Ahmed ZM, Fanning AS, Lagziel A, Kitajiri S, Ramzan K, Khan SN, Chattaraj P, Friedman PL, Anderson JM, Belyantseva IA, Forge A, Riazuddin S, Friedman TB (2006) Tricellulin is a tight-junction protein necessary for hearing. Am J Hum Genet 79:1040–1051

    Article  CAS  PubMed  Google Scholar 

  30. Weiske J, Albring KF, Huber O (2007) The tumor suppressor Fhit acts as a repressor of β-catenin transcriptional activity. Proc Natl Acad Sci USA 104:20344–20349

    Article  CAS  PubMed  Google Scholar 

  31. Gekle M, Wünsch S, Oberleithner H, Silbernagel S (1994) Characterization of two MDCK-cell subtypes as model system to study principal cell and intercalated cell properties. Pflügers Arch 428:157–162

    Article  CAS  PubMed  Google Scholar 

  32. Ehrhardt C, Schmolke M, Matzke A, Knoblauch A, Will C, Wixler V, Ludwig S (2006) Polyethylenimine, a cost-effective transfection reagent. Signal Transduct 6:179–184

    Article  CAS  Google Scholar 

  33. Bojarski C, Weiske J, Schöneberg T, Schröder W, Mankertz J, Schulzke JD, Florian P, Fromm M, Tauber R, Huber O (2004) The specific fates of tight junction proteins in apoptotic epithelial cells. J Cell Sci 117:2097–2107

    Article  CAS  PubMed  Google Scholar 

  34. Blasig IE, Winkler L, Lassowski B, Mueller SL, Zuleger N, Krause E, Krause G, Gast K, Kolbe M, Piontek J (2006) On the self-association of transmembrane tight junction proteins. Cell Mol Life Sci 63:505–514

    Article  CAS  PubMed  Google Scholar 

  35. Li Y, Fanning AS, Anderson JM, Lavie A (2005) Structure of the conserved cytoplasmic C-terminal domain of occludin: identification of the ZO-1 binding surface. J Mol Biol 352:151–164

    Article  CAS  PubMed  Google Scholar 

  36. Müller SL, Portwich M, Schmidt A, Utepbergenov DI, Huber O, Blasig IE, Krause G (2005) The tight junction protein occludin and the adherens junction protein α-catenin share a common interaction mechanism with ZO-1. J Biol Chem 280:3747–3756

    Article  PubMed  Google Scholar 

  37. Huber O, Kemler R, Langosch D (1999) Mutations affecting transmembrane segment interactions impair adhesiveness of E-cadherin. J Cell Sci 112:4415–4423

    CAS  PubMed  Google Scholar 

  38. Münter LM, Voigt P, Harmeier A, Kaden D, Gottschalk KE, Weise C, Pipkorn R, Schaefer M, Langosch D, Multhaup G (2007) GxxxG motifs within the amyloid precursor protein transmembrane sequence are critical for the etiology of Abeta42. EMBO J 26:1702–1712

    Article  PubMed  Google Scholar 

  39. Kubatzky KF, Ruan W, Gurezka R, Cohen J, Ketteler R, Watowich SS, Neumann D, Langosch D, Klingmüller U (2001) Self assembly of the transmembrane domain promotes signal transduction through the erythropoietin receptor. Curr Biol 11:110–115

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the DFG Research Group FOR 721 and the Sonnenfeld-Stiftung. We thank Dr. Michael Schaefer for providing pcDNA3-NYFP, pcDNA3-NCFP, pcDNA3-CYFP and pcDNA3-CCFP vectors and Luise Kosel for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otmar Huber.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2010_313_MOESM1_ESM.tif

Suppl. Fig. 1: (A) Western blot analysis of the expression of the FLAG-tagged tricellulin constructs in stably transfected MDCK C11 cell clones. Please note that clone K5 expresses higher levels of the full-length tricellulin construct compared to clone K13. (B) Localization of the tricellulin constructs in the different clones by confocal immunofluorescence microscopy after PFA fixation. In clone K5 localization of Tric-FLAG3 is not restricted to tricellular contacts but extends into the bicellular tight junctions as previously reported [4]. (TIFF 17745 kb)

18_2010_313_MOESM2_ESM.tif

Suppl. Fig. 2: Confocal immunofluorescence images (XYZ scans) reveals co-localization of the tricellulin constructs with ZO-1 at tight junctions. Please note that the TricDC-FLAG3 construct is less efficiently translocated to the tight junctions. For the image presented here, a cell that shows relatively strong membrane staining of TricDC-FLAG3 was chosen. (TIFF 26130 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westphal, J.K., Dörfel, M.J., Krug, S.M. et al. Tricellulin forms homomeric and heteromeric tight junctional complexes. Cell. Mol. Life Sci. 67, 2057–2068 (2010). https://doi.org/10.1007/s00018-010-0313-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0313-y

Keywords

Navigation