Skip to main content
Log in

Inactivation of the proximal NPXY motif impairs early steps in LRP1 biosynthesis

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The proximal NPXY and distal NPXYXXL motifs in the intracellular domain of LRP1 play an important role in regulation of the function of the receptor. The impact of single and double inactivating knock-in mutations of these motifs on receptor maturation, cell surface expression, and ligand internalization was analyzed in mutant and control wild-type mice and MEFs. Single inactivation of the proximal NPXY or in combination with inactivation of the distal NPXYXXL motif are both shown to be associated with an impaired maturation and premature proteasomal degradation of full-length LRP1. Therefore, only a small mature LRP1 pool is able to reach the cell surface resulting indirectly in severe impairment of ligand internalization. Single inactivation of the NPXYXXL motif revealed normal maturation, but direct impairment of ligand internalization. In conclusion, the proximal NPXY motif proves to be essential for early steps in the LRP1 biosynthesis, whereas NPXYXXL appears rather relevant for internalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Strickland DK, Ranganathan S (2003) Diverse role of LDL receptor-related protein in the clearance of proteases and in signaling. J Thromb Haemost 1:1663–1670

    Article  CAS  PubMed  Google Scholar 

  2. Lillis AP, Mikhailenko I, Strickland DK (2005) Beyond endocytosis: LRP function in cell migration, proliferation and vascular permeability. J Thromb Haemost 3:1884–1893

    Article  CAS  PubMed  Google Scholar 

  3. May P, Herz J, Bock HH (2005) Molecular mechanisms of lipoprotein receptor signalling. Cell Mol Life Sci 62:2325–2338

    Article  CAS  PubMed  Google Scholar 

  4. Willnow TE, Moehring JM, Inocencio NM, Moehring TJ, Herz J (1996) The low-density-lipoprotein receptor-related protein (LRP) is processed by furin in vivo and in vitro. Biochem J 313:71–76

    CAS  PubMed  Google Scholar 

  5. Herz J, Kowal RC, Goldstein JL, Brown MS (1990) Proteolytic processing of the 600 kD low density lipoprotein receptor-related protein (LRP) occurs in a trans-Golgi compartment. EMBO J 9:1769–1776

    CAS  PubMed  Google Scholar 

  6. Li Y, Marzolo MP, van Kerkhof P, Strous GJ, Bu G (2000) The YXXL motif, but not the two NPXY motifs, serves as the dominant endocytosis signal for low density lipoprotein receptor-related protein. J Biol Chem 275:17187–17194

    Article  CAS  PubMed  Google Scholar 

  7. Marzolo MP, Yuseff MI, Retamal C, Donoso M, Ezquer F, Farfan P, Li Y, Bu G (2003) Differential distribution of low-density lipoprotein-receptor-related protein (LRP) and megalin in polarized epithelial cells is determined by their cytoplasmic domains. Traffic 4:273–288

    Article  CAS  PubMed  Google Scholar 

  8. Donoso M, Cancino J, Lee J, van Kerkhof P, Retamal C, Bu G, Gonzalez A, Caceres A, Marzolo MP (2009) Polarized traffic of LRP1 involves AP1B and SNX17 operating on Y-dependent sorting motifs in different pathways. Mol Biol Cell 20:481–497

    Article  CAS  PubMed  Google Scholar 

  9. Trommsdorff M, Borg JP, Margolis B, Herz J (1998) Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein. J Biol Chem 273:33556–33560

    Article  CAS  PubMed  Google Scholar 

  10. Gotthardt M, Trommsdorff M, Nevitt MF, Shelton J, Richardson JA, Stockinger W, Nimpf J, Herz J (2000) Interactions of the low density lipoprotein receptor gene family with cytosolic adaptor and scaffold proteins suggest diverse biological functions in cellular communication and signal transduction. J Biol Chem 275:25616–25624

    Article  CAS  PubMed  Google Scholar 

  11. Barnes H, Larsen B, Tyers M, van der Geer P (2001) Tyrosine-phosphorylated low density lipoprotein receptor-related protein 1 (LRP1) associates with the adaptor protein SHC in SRC-transformed cells. J Biol Chem 276:19119–19125

    Article  CAS  PubMed  Google Scholar 

  12. Loukinova E, Ranganathan S, Kuznetsov S, Gorlatova N, Migliorini MM, Loukinov D, Ulery PG, Mikhailenko I, Lawrence DA, Strickland DK (2002) Platelet-derived growth factor (PDGF)-induced tyrosine phosphorylation of the low density lipoprotein receptor-related protein (LRP). Evidence for integrated co-receptor function between LRP and the PDGF. J Biol Chem 277:15499–15506

    Article  CAS  PubMed  Google Scholar 

  13. Su HP, Nakada-Tsukui K, Tosello-Trampont AC, Li Y, Bu G, Henson PM, Ravichandran KS (2002) Interaction of CED-6/GULP, an adapter protein involved in engulfment of apoptotic cells with CED-1 and CD91/low density lipoprotein receptor-related protein (LRP). J Biol Chem 277:11772–11779

    Article  CAS  PubMed  Google Scholar 

  14. Pietrzik CU, Yoon IS, Jaeger S, Busse T, Weggen S, Koo EH (2004) FE65 constitutes the functional link between the low-density lipoprotein receptor-related protein and the amyloid precursor protein. J Neurosci 24:4259–4265

    Article  CAS  PubMed  Google Scholar 

  15. van Kerkhof P, Lee J, McCormick L, Tetrault E, Lu W, Schoenfish M, Oorschot V, Strous GJ, Klumperman J, Bu G (2005) Sorting nexin 17 facilitates LRP recycling in the early endosome. EMBO J 24:2851–2861

    Article  PubMed  Google Scholar 

  16. Martin AM, Kuhlmann C, Trossbach S, Jaeger S, Waldron E, Roebroek A, Luhmann HJ, Laatsch A, Weggen S, Lessmann V, Pietrzik CU (2008) The functional role of the second NPXY motif of the LRP1 beta-chain in tissue-type plasminogen activator-mediated activation of N-methyl-d-aspartate receptors. J Biol Chem 283:12004–12013

    Article  CAS  PubMed  Google Scholar 

  17. Li Y, van Kerkhof P, Marzolo MP, Strous GJ, Bu G (2001) Identification of a major cyclic AMP-dependent protein kinase A phosphorylation site within the cytoplasmic tail of the low-density lipoprotein receptor-related protein: implication for receptor-mediated endocytosis. Mol Cell Biol 21:1185–1195

    Article  CAS  PubMed  Google Scholar 

  18. Barnes H, Ackermann EJ, van der Geer P (2003) v-Src induces Shc binding to tyrosine 63 in the cytoplasmic domain of the LDL receptor-related protein 1. Oncogene 22:3589–3597

    Article  CAS  PubMed  Google Scholar 

  19. Ranganathan S, Liu CX, Migliorini MM, Von Arnim CA, Peltan ID, Mikhailenko I, Hyman BT, Strickland DK (2004) Serine and threonine phosphorylation of the low density lipoprotein receptor-related protein by protein kinase Calpha regulates endocytosis and association with adaptor molecules. J Biol Chem 279:40536–40544

    Article  CAS  PubMed  Google Scholar 

  20. Betts GN, van der Geer P, Komives EA (2008) Structural and functional consequences of tyrosine phosphorylation in the LRP1 cytoplasmic domain. J Biol Chem 283:15656–15664

    Article  CAS  PubMed  Google Scholar 

  21. Jaeger S, Pietrzik CU (2008) Functional role of lipoprotein receptors in Alzheimer’s disease. Curr Alzheimer Res 5:15–25

    Article  CAS  PubMed  Google Scholar 

  22. Herz J, Clouthier DE, Hammer RE (1992) LDL receptor-related protein internalizes and degrades uPA-PAI-1 complexes and is essential for embryo implantation. Cell 71:411–421

    Article  CAS  PubMed  Google Scholar 

  23. Herz J, Clouthier DE, Hammer RE (1993) Correction: LDL receptor-related protein internalizes and degrades uPA-PAI-1 complexes and is essential for embryo implantation. Cell 73:428

    Article  CAS  PubMed  Google Scholar 

  24. Rohlmann A, Gotthardt M, Hammer RE, Herz J (1998) Inducible inactivation of hepatic LRP gene by cre-mediated recombination confirms role of LRP in clearance of chylomicron remnants. J Clin Invest 101:689–695

    Article  CAS  PubMed  Google Scholar 

  25. Boucher P, Gotthardt M, Li WP, Anderson RG, Herz J (2003) LRP: role in vascular wall integrity and protection from atherosclerosis. Science 300:329–332

    Article  CAS  PubMed  Google Scholar 

  26. May P, Rohlmann A, Bock HH, Zurhove K, Marth JD, Schomburg ED, Noebels JL, Beffert U, Sweatt JD, Weeber EJ, Herz J (2004) Neuronal LRP1 functionally associates with postsynaptic proteins and is required for normal motor function in mice. Mol Cell Biol 24:8872–8883

    Article  CAS  PubMed  Google Scholar 

  27. Hu L, Boesten LS, May P, Herz J, Bovenschen N, Huisman MV, Berbee JF, Havekes LM, van Vlijmen BJ, Tamsma JT (2006) Macrophage low-density lipoprotein receptor-related protein deficiency enhances atherosclerosis in ApoE/LDLR double knockout mice. Arterioscler Thromb Vasc Biol 26:2710–2715

    Article  CAS  PubMed  Google Scholar 

  28. Roebroek AJ, Reekmans S, Lauwers A, Feyaerts N, Smeijers L, Hartmann D (2006) Mutant Lrp1 knock-in mice generated by recombinase-mediated cassette exchange reveal differential importance of the NPXY motifs in the intracellular domain of LRP1 for normal fetal development. Mol Cell Biol 26:605–616

    Article  CAS  PubMed  Google Scholar 

  29. Pietrzik CU, Busse T, Merriam DE, Weggen S, Koo EH (2002) The cytoplasmic domain of the LDL receptor-related protein regulates multiple steps in APP processing. Embo J 21:5691–5700

    Article  CAS  PubMed  Google Scholar 

  30. Willnow TE, Herz J (1994) Genetic deficiency in low density lipoprotein receptor-related protein confers cellular resistance to Pseudomonas exotoxin A. Evidence that this protein is required for uptake and degradation of multiple ligands. J Cell Sci 107:719–726

    CAS  PubMed  Google Scholar 

  31. Hammond C, Helenius A (1994) Quality control in the secretory pathway: retention of a misfolded viral membrane glycoprotein involves cycling between the ER, intermediate compartment, and Golgi apparatus. J Cell Biol 126:41–52

    Article  CAS  PubMed  Google Scholar 

  32. Dedieu S, Langlois B, Devy J, Sid B, Henriet P, Sartelet H, Bellon G, Emonard H, Martiny L (2008) LRP-1 silencing prevents malignant cell invasion despite increased pericellular proteolytic activities. Mol Cell Biol 28:2980–2995

    Article  CAS  PubMed  Google Scholar 

  33. Herz J, Goldstein JL, Strickland DK, Ho YK, Brown MS (1991) 39-kDa protein modulates binding of ligands to low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor. J Biol Chem 266:21232–21238

    CAS  PubMed  Google Scholar 

  34. Gordts PL, Reekmans S, Lauwers A, Van Dongen A, Verbeek L, Roebroek AJ (2009) Inactivation of the LRP1 intracellular NPxYxxL motif in LDLR-deficient mice enhances postprandial dyslipidemia and atherosclerosis. Arterioscler Thromb Vasc Biol 29:1258–1264

    Article  CAS  PubMed  Google Scholar 

  35. Nahari T, Barzilay E, Hirschberg K, Neumann D (2008) A transplanted NPVY sequence in the cytosolic domain of the erythropoietin receptor enhances maturation. Biochem J 410:409–416

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the “Fonds voor Wetenschappelijk Onderzoek Vlaanderen (FWO)”, SAO-FRMA/2004/2006 and VIB to A.R., the Concerted Actions Program (GOA/2006-2010) to P.Z. and A.R., VIB, the SAO-FRMA/2006 and IAP P6/43 to W.A. and the “Deutsche Forschungsgemeinschaft” Grant Pi 379 3-3 and “Bundesministerium für Forschung und Bilding” Grant 01GI0719 to C.P.. The research was also funded by PhD grants of the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen) to S.R. and P.G. We thank Annick Lauwers, Nathalie Feyaerts and Leen Verbeek for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anton J. M. Roebroek or Claus U. Pietrzik.

Additional information

S. M. Reekmans, T. Pflanzer and P. L. S. M. Gordts are co-first authors. A. J. M. Roebroek and C. U. Pietrzik are co-last authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 47.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reekmans, S.M., Pflanzner, T., Gordts, P.L.S.M. et al. Inactivation of the proximal NPXY motif impairs early steps in LRP1 biosynthesis. Cell. Mol. Life Sci. 67, 135–145 (2010). https://doi.org/10.1007/s00018-009-0171-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0171-7

Keywords

Navigation