Skip to main content

Advertisement

Log in

Desmosomal interactome in keratinocytes: a systems biology approach leading to an understanding of the pathogenesis of skin disease

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

We provide the first description of the desmosome network in keratinocytes using a systems level approach. The desmo-adhesome consists of 59 proteins connected by 128 direct interactions and forms different functional subnets. Whilst the structure appears to be extremely robust against random perturbations, network fragmentation analysis suggests that the desmo-adhesome is susceptible to targeted attacks. To confirm this prediction, we applied this model to the autoimmune disease Pemphigus Vulgaris (PV), a paradigm of external perturbation of the desmosome. Our analysis showed that the adaptor protein plakophilin (Pkp) 3 was in the highest percentile group for both connectivity rate and gene expression changes in experimental PV. This observation led us to speculate that Pkp3 was crucial in desmosomal remodelling, and therefore we designed the experiments to verify this hypothesis. Our data demonstrate that, whilst Pkp3 is important in conferring adhesive strength to keratinocytes, it also acts as a central molecule mediating cell–cell detachment induced by PV IgG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bruggeman FJ, Westerhoff HV (2007) The nature of systems biology. Trends Microbiol 15:45–50

    Article  CAS  PubMed  Google Scholar 

  2. Hess EL (1970) Origins of molecular biology. Science 168:664–669

    Article  CAS  PubMed  Google Scholar 

  3. Almaas E (2007) Biological impacts and context of network theory. J Exp Biol 210:1548–1558

    Article  PubMed  Google Scholar 

  4. Ramaswamy S, Ross KN, Lander ES, Golub TR (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33:49–54

    Article  CAS  PubMed  Google Scholar 

  5. Ramaswamy S (2007) Rational design of cancer-drug combinations. N Engl J Med 357:299–300

    Article  CAS  PubMed  Google Scholar 

  6. Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ, Shark KB, Grande WJ, Hughes KM, Kapur V, Gregersen PK, Behrens TW (2003) Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci USA 100:2610–2615

    Article  CAS  PubMed  Google Scholar 

  7. Nelson WJ (2008) Regulation of cell–cell adhesion by the cadherin–catenin complex. Biochem Soc Trans 36:149–155

    Article  CAS  PubMed  Google Scholar 

  8. Angst BD, Marcozzi C, Magee AI (2001) The cadherin superfamily: diversity in form and function. J Cell Sci 114:629–641

    CAS  PubMed  Google Scholar 

  9. Cirillo N (2009) Pathophysiology of the desmosome. Research Signpost, Kerala, India

    Google Scholar 

  10. Garrod D, Chidgey M (2008) Desmosome structure, composition and function. Biochim Biophys Acta 1778:572–587

    Article  CAS  PubMed  Google Scholar 

  11. Miera A, Foshay K, Stewart A, Gallicano GI (2009) Development of a sticky situation: the role of the desmosome in epidermal morphogenesis. In: Cirillo N (ed) Pathophysiology of the desmosome. Research Signpost, Kerala, pp 33–61

    Google Scholar 

  12. Payne AS, Hanakawa Y, Amagai M, Stanley JR (2004) Desmosomes and disease: pemphigus and bullous impetigo. Curr Opin Cell Biol 16:536–543

    Article  CAS  PubMed  Google Scholar 

  13. Green KJ, Simpson CL (2007) Desmosomes: new perspectives on a classic. J Invest Dermatol 127:2499–2515

    Article  CAS  PubMed  Google Scholar 

  14. Lanza A, Cirillo N, Femiano F, Gombos F (2006) How does acantholysis occur in pemphigus vulgaris: a critical review. J Cutan Pathol 33:401–412

    Article  PubMed  Google Scholar 

  15. Waschke J (2008) The desmosome and pemphigus. Histochem Cell Biol 130:21–54

    Article  CAS  PubMed  Google Scholar 

  16. Zaidel-Bar R, Itzkovitz S, Ma’ayan A, Iyengar R, Geiger B (2007) Functional atlas of the integrin adhesome. Nat Cell Biol 9:858–867

    Article  CAS  PubMed  Google Scholar 

  17. Paris L, Bazzoni G (2008) The protein interaction network of the epithelial junctional complex: a system-level analysis. Mol Biol Cell 19:5409–5421

    Article  CAS  PubMed  Google Scholar 

  18. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  Google Scholar 

  19. Pieroni E, de la Fuente van Bentem S, Mancosu G, Capobianco E, Hirt H, de la Fuente A (2008) Protein networking: insights into global functional organization of proteomes. Proteomics 8:799–816

    Google Scholar 

  20. Albert R, Jeong H, Barabasi AL (2000) Error and attack tolerance of complex networks. Nature 406:378–382

    Article  CAS  PubMed  Google Scholar 

  21. Lanza A, Cirillo N, Rossiello R, Rienzo M, Cutillo L, Casamassimi A, de Nigris F, Schiano C, Rossiello L, Femiano F, Gombos F, Napoli C (2008) Evidence of key role of Cdk2 overexpression in pemphigus vulgaris. J Biol Chem 283:8736–8745

    Article  CAS  PubMed  Google Scholar 

  22. Cirillo N, Lanza M, De Rosa A, Femiano F, Gombos F, Lanza A (2008) At least three phosphorylation events induced by pemphigus vulgaris sera are pathogenically involved in keratinocyte acantholysis. Int J Immunopathol Pharmacol 21:189–195

    CAS  PubMed  Google Scholar 

  23. Cirillo N, Gombos F, Lanza A (2007) Pemphigus vulgaris immunoglobulin G can recognize a 130 000 MW antigen other than desmoglein 3 on peripheral blood mononuclear cell surface. Immunology 121:377–382

    Article  CAS  PubMed  Google Scholar 

  24. Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106:761–771

    Article  CAS  PubMed  Google Scholar 

  25. Calautti E, Cabodi S, Stein PL, Hatzfeld M, Kedersha N, Dotto GP (1998) Tyrosine phosphorylation and Src-family kinases control keratinocyte cell–cell adhesion. J Cell Biol 141:1449–1465

    Article  CAS  PubMed  Google Scholar 

  26. Cirillo N, Lanza M, Femiano F, Gaeta GM, De Rosa A, Gombos F, Lanza A (2007) If pemphigus vulgaris IgG are the cause of acantholysis, new IgG-independent mechanisms are the concause. J Cell Physiol 212:563–567

    Article  CAS  PubMed  Google Scholar 

  27. Cirillo N, Lanza M, De Rosa A, Cammarota M, La Gatta A, Gombos F, Lanza A (2008) The most widespread desmosomal cadherin, desmoglein 2, is a novel target of caspase 3-mediated apoptotic machinery. J Cell Biochem 103:598–606

    Article  CAS  PubMed  Google Scholar 

  28. Lanza A, Santoro R, De Rosa A, Gaeta GM, Gombos F, Cirillo N (2007) Inhibition of protein phosphorylation, but not synthesis nor lysosomal degradation, prevents keratinocyte adhesion loss induced by pemphigus vulgaris serum. J Stomatol Invest 1:25–32

    Google Scholar 

  29. Bragulla HH, Homberger DG (2009) Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J Anat 214:516–559

    Article  CAS  PubMed  Google Scholar 

  30. Hesse M, Watson ED, Schwaluk T, Magin TM (2005) Rescue of keratin 18/19 doubly deficient mice using aggregation with tetraploid embryos. Eur J Cell Biol 84:355–361

    Article  CAS  PubMed  Google Scholar 

  31. Waschke J (2008) Direct interference with desmoglein binding in pemphigus. J Stomatol Invest 2:53–55

    Google Scholar 

  32. Sklyarova T, Bonné S, D’Hooge P, Denecker G, Goossens S, De Rycke R, Borgonie G, Bösl M, van Roy F, van Hengel J (2008) Plakophilin-3-deficient mice develop hair coat abnormalities and are prone to cutaneous inflammation. J Invest Dermatol 128:1375–1385

    Article  CAS  PubMed  Google Scholar 

  33. Nguyen VT, Arredondo J, Chernyavsky AI, Kitajima Y, Pittelkow M, Grando SA (2004) Pemphigus vulgaris IgG and methylprednisolone exhibit reciprocal effects on keratinocytes. J Biol Chem 279:2135–2146

    Article  CAS  PubMed  Google Scholar 

  34. Stellavato A, Cirillo N (2007) Fate of desmoglein 3 in oral pemphigus vulgaris: an RT-PCR study of cell adhesion molecules. J Stomatol Invest 1:63–68

    Google Scholar 

  35. Caldelari R, de Bruin A, Baumann D, Suter MM, Bierkamp C, Balmer V, Müller E (2001) A central role for the armadillo protein plakoglobin in the autoimmune disease pemphigus vulgaris. J Cell Biol 153:823–834

    Article  CAS  PubMed  Google Scholar 

  36. Williamson L, Raess NA, Caldelari R, Zakher A, de Bruin A, Posthaus H, Bolli R, Hunziker T, Suter MM, Müller EJ (2006) Pemphigus vulgaris identifies plakoglobin as key suppressor of c-Myc in the skin. EMBO J 25:3298–3309

    Article  CAS  PubMed  Google Scholar 

  37. Berkowitz P, Hu P, Warren S, Liu Z, Diaz LA, Rubenstein DS (2006) p38MAPK inhibition prevents disease in pemphigus vulgaris mice. Proc Natl Acad Sci USA 103:12855–12860

    Article  CAS  PubMed  Google Scholar 

  38. Nguyen VT, Chernyavsky AI, Arredondo J, Bercovich D, Orr-Urtreger A, Vetter DE, Wess J, Beaudet AL, Kitajima Y, Grando SA (2004) Synergistic control of keratinocyte adhesion through muscarinic and nicotinic acetylcholine receptor subtypes. Exp Cell Res 294:534–549

    Article  CAS  PubMed  Google Scholar 

  39. Chernyavsky AI, Arredondo J, Kitajima Y, Sato-Nagai M, Grando SA (2007) Desmoglein versus non-desmoglein signaling in pemphigus acantholysis: characterization of novel signaling pathways downstream of pemphigus vulgaris antigens. J Biol Chem 282:13804–13812

    Article  CAS  PubMed  Google Scholar 

  40. Chernyavsky AI, Arredondo J, Piser T, Karlsson E, Grando SA (2008) Differential coupling of M1 muscarinic and alpha7 nicotinic receptors to inhibition of pemphigus acantholysis. J Biol Chem 283:3401–3408

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Cirillo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2009_139_MOESM1_ESM.tif

Schematic representation of the desmosome and skin disease related to failure of desmosomal components (Fig. S1, TIFF 428 kb)

The structural subnet, formed by 30 intrinsic proteins and 62 internal connections (Fig. S2, TIFF 112 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cirillo, N., Prime, S.S. Desmosomal interactome in keratinocytes: a systems biology approach leading to an understanding of the pathogenesis of skin disease. Cell. Mol. Life Sci. 66, 3517–3533 (2009). https://doi.org/10.1007/s00018-009-0139-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0139-7

Keywords

Navigation