Skip to main content
Log in

Aryl-hydrocarbon receptor-dependent alteration of FAK/RhoA in the inhibition of HUVEC motility by 3-methylcholanthrene

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

We previously demonstrated the antiproliferative and antiangiogenic effects of 3-methylcholanthrene (3MC), an aryl-hydrocarbon receptor (AhR) agonist, in human umbilical vascular endothelial cells (HUVECs). Herein, we unraveled its molecular mechanisms in inhibiting HUVEC motility. 3MC down-regulated FAK, but up-regulated RhoA, which was rescued by AhR knockdown. It led us to identify novel AhR binding sites in the FAK/RhoA promoters. Additionally, 3MC increased RhoA activity via suppression of a negative feedback pathway of FAK/p190RhoGAP. With an increase in membrane-bound RhoA, subsequent stress fiber and focal adhesion complex formation was observed in 3MC-treated cells, and this was reversed by a RhoA inhibitor and AhR antagonists. Notably, these compounds significantly reversed 3MC-mediated anti-migration in a transwell assay. The in vitro findings were further confirmed using an animal model of Matrigel formation in Balb/c mice. Collectively, AhR’s genomic regulation of FAK/RhoA, together with RhoA activation, is ascribable to the anti-migration effect of 3MC in HUVECs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Manes S, Mira E, Gomez-Mouton C, Lacalle RA, Martinez C (2000) Cells on the move: a dialogue between polarization and motility. IUBMB Life 49:89–96

    Article  PubMed  CAS  Google Scholar 

  2. Matsuzawa S, Li C, Ni CZ, Takayama S, Reed JC, Ely KR (2003) Structural analysis of Siah1 and its interactions with Siah-interacting protein (SIP). J Biol Chem 278:1837–1840

    Article  PubMed  CAS  Google Scholar 

  3. Thomas SM, Brugge JS (1997) Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol 13:513–609

    Article  PubMed  CAS  Google Scholar 

  4. Hildebrand JD, Schaller MD, Parsons JT (1995) Paxillin, a tyrosine phosphorylated focal adhesion-associated protein binds to the carboxyl terminal domain of focal adhesion kinase. Mol Biol Cell 6:637–647

    PubMed  CAS  Google Scholar 

  5. Xing Z, Chen HC, Nowlen JK, Taylor SJ, Shalloway D, Guan JL (1994) Direct interaction of v-Src with the focal adhesion kinase mediated by the Src SH2 domain. Mol Biol Cell 5:413–421

    PubMed  CAS  Google Scholar 

  6. Zhang X, Chattopadhyay A, Ji QS, Owen JD, Ruest PJ, Carpenter G, Hanks SK (1999) Focal adhesion kinase promotes phospholipase C-gamma1 activity. Proc Natl Acad Sci USA 96:9021–9026

    Article  PubMed  CAS  Google Scholar 

  7. Ilic D, Furuta Y, Kanazawa S, Takeda N, Sobue K, Nakatsuji N, Nomura S, Fujimoto J, Okada M, Yamamoto T (1995) Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377:539–544

    Article  PubMed  CAS  Google Scholar 

  8. Sekine Y, Tsuji S, Ikeda O, Sugiyma K, Oritani K, Shimoda K, Muromoto R, Ohbayashi N, Yoshimura A, Matsuda T (2007) Signal-transducing adaptor protein-2 regulates integrin-mediated T cell adhesion through protein degradation of focal adhesion kinase. J Immunol 179:2397–2407

    PubMed  CAS  Google Scholar 

  9. Gunther W, Skaftnesmo KO, Arnold H, Terzis AJ (2003) Molecular approaches to brain tumour invasion. Acta Neurochir 145:1029–1036

    Article  CAS  Google Scholar 

  10. Chan AY, Bailly M, Zebda N, Segall JE, Condeelis JS (2000) Role of cofilin in epidermal growth factor-stimulated actin polymerization and lamellipod protrusion. J Cell Biol 148:531–542

    Article  PubMed  CAS  Google Scholar 

  11. Nobes CD, Hall A (1999) Rho GTPases control polarity, protrusion, and adhesion during cell movement. J Cell Biol 144:1235–1244

    Article  PubMed  CAS  Google Scholar 

  12. Holinstat M, Knezevic N, Broman M, Samarel AM, Malik AB, Mehta D (2006) Suppression of RhoA activity by focal adhesion kinase-induced activation of p190RhoGAP: role in regulation of endothelial permeability. J Biol Chem 281:2296–2305

    Article  PubMed  CAS  Google Scholar 

  13. Riento K, Ridley AJ (2003) Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol 4:446–456

    Article  PubMed  CAS  Google Scholar 

  14. Totsukawa G, Yamakita Y, Yamashiro S, Hartshorne DJ, Sasaki Y, Matsumura F (2000) Distinct roles of ROCK (Rho-kinase) and MLCK in spatial regulation of MLC phosphorylation for assembly of stress fibers and focal adhesions in 3T3 fibroblasts. J Cell Biol 150:797–806

    Article  PubMed  CAS  Google Scholar 

  15. Bartolome RA, Wright N, Molina-Ortiz I, Sanchez-Luque FJ, Teixido J (2008) Activated G(alpha)13 impairs cell invasiveness through p190RhoGAP-mediated inhibition of RhoA activity. Cancer Res 68:8221–8230

    Article  PubMed  CAS  Google Scholar 

  16. Ren XD, Kiosses WB, Sieg DJ, Otey CA, Schlaepfer DD, Schwartz MA (2000) Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover. J Cell Sci 113(20):3673–3678

    PubMed  CAS  Google Scholar 

  17. Zhang M, Maddala R, Rao PV (2008) Novel molecular insights into RhoA GTPase-induced resistance to aqueous humor outflow through the trabecular meshwork. Am J Physiol Cell Physiol 295:C1057–C1070

    Article  PubMed  CAS  Google Scholar 

  18. Pang PH, Lin YH, Lee YH, Hou HH, Hsu SP, Juan SH (2008) Molecular mechanisms of p21 and p27 induction by 3-methylcholanthrene, an aryl-hydrocarbon receptor agonist, involved in antiproliferation of human umbilical vascular endothelial cells. J Cell Physiol 215:161–171

    Article  PubMed  CAS  Google Scholar 

  19. Juan SH, Lee JL, Ho PY, Lee YH, Lee WS (2006) Antiproliferative and antiangiogenic effects of 3-methylcholanthrene, an aryl-hydrocarbon receptor agonist, in human umbilical vascular endothelial cells. Eur J Pharmacol 530:1–8

    Article  PubMed  CAS  Google Scholar 

  20. Jaffe EA, Nachman RL, Becker CG, Minick CR (1973) Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 52:2745–2756

    Article  PubMed  CAS  Google Scholar 

  21. Sun YV, Boverhof DR, Burgoon LD, Fielden MR, Zacharewski TR (2004) Comparative analysis of dioxin response elements in human, mouse and rat genomic sequences. Nucleic Acids Res 32:4512–4523

    Article  PubMed  CAS  Google Scholar 

  22. Shih CM, Lin H, Liang YC, Lee WS, Bi WF, Juan SH (2004) Concentration-dependent differential effects of quercetin on rat aortic smooth muscle cells. Eur J Pharmacol 496:41–48

    Article  PubMed  CAS  Google Scholar 

  23. Falk W, Goodwin RH Jr, Leonard EJ (1980) A 48-well micro chemotaxis assembly for rapid and accurate measurement of leukocyte migration. J Immunol Methods 33:239–247

    PubMed  CAS  Google Scholar 

  24. Passaniti A, Taylor RM, Pili R, Guo Y, Long PV, Haney JA, Pauly RR, Grant DS, Martin GR (1992) A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab Invest J Tech Meth Pathol 67:519–528

    CAS  Google Scholar 

  25. Rico B, Beggs HE, Schahin-Reed D, Kimes N, Schmidt A, Reichardt LF (2004) Control of axonal branching and synapse formation by focal adhesion kinase. Nat Neurosci 7:1059–1069

    Article  PubMed  CAS  Google Scholar 

  26. Zhai J, Lin H, Nie Z, Wu J, Canete-Soler R, Schlaepfer WW, Schlaepfer DD (2003) Direct interaction of focal adhesion kinase with p190RhoGEF. J Biol Chem 278:24865–24873

    Article  PubMed  CAS  Google Scholar 

  27. Tamura M, Gu J, Danen EH, Takino T, Miyamoto S, Yamada KM (1999) PTEN interactions with focal adhesion kinase and suppression of the extracellular matrix-dependent phosphatidylinositol 3-kinase/Akt cell survival pathway. J Biol Chem 274:20693–20703

    Article  PubMed  CAS  Google Scholar 

  28. Besson A, Gurian-West M, Schmidt A, Hall A, Roberts JM (2004) p27Kip1 modulates cell migration through the regulation of RhoA activation. Genes Dev 18:862–876

    Article  PubMed  CAS  Google Scholar 

  29. Kanda S, Miyata Y, Kanetake H (2004) Role of focal adhesion formation in migration and morphogenesis of endothelial cells. Cell Signal 16:1273–1281

    Article  PubMed  CAS  Google Scholar 

  30. Ishikura K, Fujita H, Hida M, Awazu M (2005) Trapidil inhibits platelet-derived growth factor-induced migration via protein kinase A and RhoA/Rho-associated kinase in rat vascular smooth muscle cells. Eur J Pharmacol 515:28–33

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by a grant [NSC97-2320-B-038-017-MY3(1-3)] from the National Science Council, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Hui Juan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, CC., Tsai, SY., Lin, H. et al. Aryl-hydrocarbon receptor-dependent alteration of FAK/RhoA in the inhibition of HUVEC motility by 3-methylcholanthrene. Cell. Mol. Life Sci. 66, 3193–3205 (2009). https://doi.org/10.1007/s00018-009-0102-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0102-7

Keywords

Navigation