Skip to main content
Log in

Transcriptional coactivator EDF-1 is required for PPARγ-stimulated adipogenesis

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Peroxisome proliferator-activated receptor-γ (PPARγ) is essential for adipogenesis. Since EDF-1 is a cofactor of PPARγ, we investigated the molecular cross-talk between EDF-1 and PPARγ in adipogenesis. While EDF-1 was not modulated during differentiation of 3T3-L1 cells, it co-immunoprecipitated with PPARγ. Silencing EDF-1 by shRNAs inhibited the differentiation in adipocytes of 3T3-L1 cells, as detected by the staining of intracellular triglycerides and the expression of the PPARγ target gene aP2. Accordingly, we found that anti-EDF-1 shRNAs decreased ligand dependent activation of PPARγ in 3T3-L1 transiently transfected with a vector expressing luciferase under the control of a PPARγ responsive consensus. To rule out that this inhibition is due to the concomitant downregulation of PPARγ levels, we overexpressed PPARγ in 3T3-L1 silencing EDF-1 and found a decrease of ligand dependent activation of PPARγ, in spite of the high amounts of PPARγ. These results demonstrate that EDF-1 is required for PPARγ transcriptional activation during 3T3-L1 differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM (2000) Transcriptional regulation of adipogenesis. Genes Dev 14:1293–1307

    PubMed  CAS  Google Scholar 

  2. Gurnell M (2005) Peroxisome proliferator-activated receptor gamma and the regulation of adipocyte function: lessons from human genetic studies. Best Pract Res Clin Endocrinol Metab 19:501–523

    Article  PubMed  CAS  Google Scholar 

  3. Knouff C, Auwerx J (2004) Peroxisome proliferator-activated receptor-gamma calls for activation in moderation: lessons from genetics and pharmacology. Endocr Rev 25:899–918

    Article  PubMed  CAS  Google Scholar 

  4. Evans RM, Barish GD, Wang YX (2004) PPARs and the complex journey to obesity. Nat Med 10:355–361

    Article  PubMed  CAS  Google Scholar 

  5. Rosen ED, Spiegelman BM (2001) PPARgamma: a nuclear regulator of metabolism, differentiation, and cell growth. J Biol Chem 276:37731–37734

    Article  PubMed  CAS  Google Scholar 

  6. Lehrke M, Lazar MA (2005) The many faces of PPARgamma. Cell 123:993–999

    Article  PubMed  CAS  Google Scholar 

  7. Rosenfeld MG, Lunyak VV, Glass CK (2005) Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev 20:1405–1428

    Article  Google Scholar 

  8. Brendel C, Gelman L, Auwerx J (2002) Multiprotein bridging factor-1 (MBF-1) is a cofactor for nuclear receptors that regulate lipid metabolism. Mol Endocrinol 16:1367–1377

    Article  PubMed  CAS  Google Scholar 

  9. Dragoni I, Mariotti M, Consalez G, Soria M, Maier JAM (1998) EDF-1, a novel gene product downregulated in human endothelial cell differentiation. J Biol Chem 273:31119–31124

    Article  PubMed  CAS  Google Scholar 

  10. Mariotti M, Avon E, De Benedictis L, Maier JAM (2000) Interaction between endothelial differentiation-related factor-1 and calmodulin in vitro and in vivo. J Biol Chem 275:24047–24051

    Article  PubMed  CAS  Google Scholar 

  11. Ballabio E, Mariotti M, De Benedictis L, Maier JAM (2004) The dual role of EDF-1 in the cytosol and in the nucleus: modulation by PKA. Mol Cell Life Sci 61:1069–1074

    Article  CAS  Google Scholar 

  12. Bernardini D, Mariotti M, Ballabio E, Maier JAM (2005) Differential expression of EDF-1 and endothelial nitric oxide synthase by proliferating, quiescent and senescent microvascular endothelial cells. Biochim Biophys Acta Mol Cell Res 1745:265–272

    Article  CAS  Google Scholar 

  13. Mishima M, Ozaki J, Ikegami T, Kabe Y, Goto M, Ueda H, Hirose S, Handa H, Shirakawa M (1999) Resonance assignments, secondary structure and 15 N relaxation data of the human transcriptional coactivator hMBF1 (57–148). J Biomol NMR 14:373–376

    Article  PubMed  CAS  Google Scholar 

  14. Miotto B, Struhl K (2006) Differential gene regulation by selective association of transcriptional coactivators and bZIP DNA-binding domains. Mol Cell Biol 26:5969–5982

    Article  PubMed  CAS  Google Scholar 

  15. Stephens JM, Lee J, Pilch PF (1997) Tumor necrosis factor-alpha-induced insulin resistance in 3T3–L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction. J Biol Chem 272:971–976

    Article  PubMed  CAS  Google Scholar 

  16. Tzameli I, Fang H, Ollero M, Shi H, Hamm JK, Kievit P, Hollenberg AN, Flier JS (2004) Regulated production of a peroxisome-proliferator activated receptor-γ ligand during an early phase of adipocyte differentiation in 3T3–L1 adipocyte. J Biol Chem 279:1093–1102

    Article  Google Scholar 

  17. Sentinelli F, Filippi E, Cavallo MG, Romeo S, Fanelli M, Baroni MG (2006) The G972R variant of the insulin receptor substrate-1 gene impairs insulin signaling and cell differentiation in 3T3–L1 adipocytes; treatment with a PPARgamma agonist restores normal cell signaling and differentiation. J Endocrinol 188(2):271–285

    Article  PubMed  CAS  Google Scholar 

  18. Metzger D, Imai T, Jiang M, Takukawa R, Desvergne B, Wahli W, Chambon P (2005) Functional role of RXRs and PPAR gamma in mature adipocytes. Prostaglandins Leukot Essent Fatty Acids 73(1):51–58

    Article  PubMed  CAS  Google Scholar 

  19. Takemaru K, Li FQ, Ueda H, Hirose S (1997) Multiprotein bridging factor 1 (MBF1) is an evolutionarily conserved transcriptional coactivator that connects a regulatory factor and TATA element-binding protein. Proc Natl Acad Sci USA 94:7251–7256

    Article  PubMed  CAS  Google Scholar 

  20. Wu Z, Xie Y, Bucher NL, Farmer SR (1995) Conditional ectopic expression of C/EBP beta in NIH-3T3 cells induces PPAR gamma and stimulates adipogenesis. Genes Dev 9:2350–2363

    Article  PubMed  CAS  Google Scholar 

  21. Hu E, Tontonoz P, Spiegelman BM (1995) Transdifferentiation of myoblasts by the adipogenic transcription factors PPAR gamma and C/EBP alpha. Proc Natl Acad Sci USA 92:9856–9860

    Article  PubMed  CAS  Google Scholar 

  22. Albright SR, Tjian R (2000) TAFs revisited: more data reveal new twists and confirm old ideas. Gene 242:1–13

    Article  PubMed  CAS  Google Scholar 

  23. Fox KE, Fankell DM, Erickson PF, Majka SM, Crossno JT Jr, Klemm DJ (2006) Depletion of cAMP-response element-binding protein/ATF1 inhibits adipogenic conversion of 3T3–L1 cells ectopically expressing CCAAT/enhancer-binding protein (C/EBP) alpha, C/EBP beta, or PPAR gamma 2. J Biol Chem 281:40341–40353

    Article  PubMed  CAS  Google Scholar 

  24. Takahashi Y, Inoue J, Kagechika H, Sato R (2009) ApoC-III gene expression is sharply increased during adipogenesis and is augmented by retinoid X receptor (RXR) agonists. FEBS Lett 583:493–497

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeanette A. M. Maier.

Additional information

M. Leidi and M. Mariotti have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leidi, M., Mariotti, M. & Maier, J.A.M. Transcriptional coactivator EDF-1 is required for PPARγ-stimulated adipogenesis. Cell. Mol. Life Sci. 66, 2733–2742 (2009). https://doi.org/10.1007/s00018-009-0069-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0069-4

Keywords

Navigation