Skip to main content

Advertisement

Log in

d-Ribosylated Tau forms globular aggregates with high cytotoxicity

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Although the glycation of Tau that is involved in paired helical filament formation in Alzheimer’s disease has been widely studied, little attention has been paid to the role of d-ribose in the glycation of Tau. Here, we show that Tau is rapidly glycated in the presence of d-ribose, resulting in oligomerization and polymerization. Glycated derivatives appeared after 24 h incubation. Western blotting indicated the formation of advanced glycation end-products (AGEs) during initial stages of glycation. Thioflavin T-positive (ThT-positive) aggregations that appeared from day 4 indicated the globular-like features. Atomic force microscopy revealed that the surface morphology of ribosylated Tau40 was globular-like. Kinetic studies suggested that d-ribosylated Tau is slowly oligomerized and rapidly polymerized with ThT-positive features. Moreover, d-ribosylated Tau aggregates were highly toxic to SHSY5Y cells and resulted in both apoptosis and necrosis. This work has demonstrated that d-ribose reacted with Tau protein rapidly, producing ThT-positive aggregations which had high cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci USA 72:1858–1862

    Article  PubMed  CAS  Google Scholar 

  2. Drechsel DN, Hyman AA, Cobb MH, Kirschner MW (1992) Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol Biol Cell 3:1141–1154

    PubMed  CAS  Google Scholar 

  3. Friede RL, Ho KC (1977) The relation of axonal transport of mitochondria with microtubules and other axoplasmic organelles. J Physiol 265:507–519

    PubMed  CAS  Google Scholar 

  4. Binder LI, Frankfurter A, Rebhun LI (1985) The distribution of tau in the mammalian central nervous system. J Cell Biol 101:1371–1378

    Article  PubMed  CAS  Google Scholar 

  5. Khatoon S, Grundke-Iqbal I, Iqbal K (1994) Levels of normal and abnormally phosphorylated tau in different cellular and regional compartments of Alzheimer disease and control brains. FEBS Lett 351:80–84

    Article  PubMed  CAS  Google Scholar 

  6. Papasozomenos SC, Binder LI (1987) Phosphorylation determines two distinct species of Tau in the central nervous system. Cell Motil Cytoskeleton 8:210–226

    Article  PubMed  CAS  Google Scholar 

  7. Wei Y, Qu MH, Wang XS, Chen L, Wang DL, Liu Y, Hua Q, He RQ (2008) Binding to the minor groove of the double-strand, tau protein prevents DNA from damage by peroxidation. PLoS ONE 3:e2600

    Article  PubMed  CAS  Google Scholar 

  8. Lindwall G, Cole RD (1984) Phosphorylation affects the ability of tau protein to promote microtubule assembly. J Biol Chem 259:5301–5305

    PubMed  CAS  Google Scholar 

  9. Iqbal K, Grundke-Iqbal I, Zaidi T, Merz PA, Wen GY, Shaikh SS, Wisniewski HM, Alafuzoff I, Winblad B (1986) Defective brain microtubule assembly in Alzheimer’s disease. Lancet 2:421–426

    Article  PubMed  CAS  Google Scholar 

  10. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917

    Article  PubMed  CAS  Google Scholar 

  11. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM (1986) Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 261:6084–6089

    PubMed  CAS  Google Scholar 

  12. Smith MA, Taneda S, Richey PL, Miyata S, Yan SD, Stern D, Sayre LM, Monnier VM, Perry G (1994) Advanced Maillard reaction end products are associated with Alzheimer disease pathology. Proc Natl Acad Sci USA 91:5710–5714

    Article  PubMed  CAS  Google Scholar 

  13. Horie K, Miyata T, Yasuda T, Takeda A, Yasuda Y, Maeda K, Sobue G, Kurokawa K (1997) Immunohistochemical localization of advanced glycation end products, pentosidine, and carboxymethyllysine in lipofuscin pigments of Alzheimer’s disease and aged neurons. Biochem Biophys Res Commun 236:327–332

    Article  PubMed  CAS  Google Scholar 

  14. Sasaki N, Fukatsu R, Tsuzuki K, Hayashi Y, Yoshida T, Fujii N, Koike T, Wakayama I, Yanagihara R, Garruto R, Amano N, Makita Z (1998) Advanced glycation end products in Alzheimer’s disease and other neurodegenerative diseases. Am J Pathol 153:1149–1155

    PubMed  CAS  Google Scholar 

  15. Ko LW, Ko EC, Nacharaju P, Liu WK, Chang E, Kenessey A, Yen SH (1999) An immunochemical study on tau glycation in paired helical filaments. Brain Res 830:301–313

    Article  PubMed  CAS  Google Scholar 

  16. Yan SD, Yan SF, Chen X, Fu J, Chen M, Kuppusamy P, Smith MA, Perry G, Godman GC, Nawroth P (1995) Non-enzymatically glycated tau in Alzheimer’s disease induces neuronal oxidant stress resulting in cytokine gene expression and release of amyloid beta-peptide. Nat Med 1:693–699

    Article  PubMed  CAS  Google Scholar 

  17. Kuhla B, Haase C, Flach K, Luth HJ, Arendt T, Munch G (2007) Effect of pseudophosphorylation and cross-linking by lipid peroxidation and advanced glycation end product precursors on tau aggregation and filament formation. J Biol Chem 282:6984–6991

    Article  PubMed  CAS  Google Scholar 

  18. Necula M, Kuret J (2004) Pseudophosphorylation and glycation of tau protein enhance but do not trigger fibrillization in vitro. J Biol Chem 279:49694–49703

    Article  PubMed  CAS  Google Scholar 

  19. Gonzalez C, Farias G, Maccioni RB (1998) Modification of tau to an Alzheimer’s type protein interferes with its interaction with microtubules. Cell Mol Biol (Noisy-le-grand) 44:1117–1127

    CAS  Google Scholar 

  20. Ledesma MD, Bonay P, Colaco C, Avila J (1994) Analysis of microtubule-associated protein tau glycation in paired helical filaments. J Biol Chem 269:21614–21619

    PubMed  CAS  Google Scholar 

  21. Nacharaju P, Ko L, Yen SH (1997) Characterization of in vitro glycation sites of tau. J Neurochem 69:1709–1719

    Article  PubMed  CAS  Google Scholar 

  22. Nelson DL, Cox MM (2004) Lehninger principle of biochemistry, 3rd edn. Worth, New York, pp 297–324

    Google Scholar 

  23. Matiacevich SB, Buera MP (2006) A critical evaluation of fluorescence as a potential marker for the Maillard reaction. Food Chem 95:423–430

    Article  CAS  Google Scholar 

  24. Moreaux V, Birlouez-Aragon I (1997) Degradation of tryptophan in heated ß-lactoglobulin-lactose mixtures is associated with intense Maillard reaction. J Agric Food Chem 45:1905–1910

    Article  CAS  Google Scholar 

  25. Ferrer E, Alegria A, Farre R, Clemente G, Calvo C (2005) Fluorescence, browning index, and color in infant formulas during storage. J Agric Food Chem 53:4911–4917

    Article  PubMed  CAS  Google Scholar 

  26. Liu X, Metzger LE (2007) Application of fluorescence spectroscopy for monitoring changes in nonfat dry milk during storage. J Dairy Sci 90:24–37

    PubMed  CAS  Google Scholar 

  27. Garlick RL, Mazer JS, Higgins PJ, Bunn HF (1983) Characterization of glycosylated hemoglobins. Relevance to monitoring of diabetic control and analysis of other proteins. J Clin Invest 71:1062–1072

    Article  PubMed  CAS  Google Scholar 

  28. Shaklai N, Garlick RL, Bunn HF (1984) Nonenzymatic glycosylation of human serum albumin alters its conformation and function. J Biol Chem 259:3812–3817

    PubMed  CAS  Google Scholar 

  29. Mendez DL, Jensen RA, McElroy LA, Pena JM, Esquerra RM (2005) The effect of non-enzymatic glycation on the unfolding of human serum albumin. Arch Biochem Biophys 444:92–99

    Article  PubMed  CAS  Google Scholar 

  30. James PE, Lang D, Tufnell-Barret T, Milsom AB, Frenneaux MP (2004) Vasorelaxation by red blood cells and impairment in diabetes: reduced nitric oxide and oxygen delivery by glycated hemoglobin. Circ Res 94:976–983

    Article  PubMed  CAS  Google Scholar 

  31. He RQ, Yang MD, Zheng X, Zhou JX (1995) Isolation and some properties of glycated d-glyceraldehyde-3-phosphate dehydrogenase from rabbit muscle. Biochem J 309(Pt 1):133–139

    PubMed  CAS  Google Scholar 

  32. He RQ, Li YG, Wu XQ, Li L (1995) Inactivation and conformation changes of the glycated and non-glycated d-glyceraldehyde-3-phosphate dehydrogenase during guanidine-HCl denaturation. Biochim Biophys Acta 1253:47–56

    PubMed  Google Scholar 

  33. Sheng Z, Liu Y, Chen L, He R (2008) Nonenzymatic glycation of α-synuclein and changes in its conformation. Prog Biochem Biophys 35:1202–1208

    CAS  Google Scholar 

  34. Nie CL, Wei Y, Chen X, Liu YY, Dui W, Liu Y, Davies MC, Tendler SJ, He RG (2007) Formaldehyde at low concentration induces protein tau into globular amyloid-like aggregates in vitro and in vivo. PLoS ONE 2:e629

    Article  PubMed  CAS  Google Scholar 

  35. Crowther RA, Olesen OF, Smith MJ, Jakes R, Goedert M (1994) Assembly of Alzheimer-like filaments from full-length tau protein. FEBS Lett 337:135–138

    Article  PubMed  CAS  Google Scholar 

  36. Hua Q, He RQ (2003) Tau could protect DNA double helix structure. Biochim Biophys Acta 1645:205–211

    PubMed  CAS  Google Scholar 

  37. Morton RE, Evans TA (1992) Modification of the bicinchoninic acid protein assay to eliminate lipid interference in determining lipoprotein protein content. Anal Biochem 204:332–334

    Article  PubMed  CAS  Google Scholar 

  38. Baker JR, Metcalf PA, Johnson RN, Newman D, Rietz P (1985) Use of protein-based standards in automated colorimetric determinations of fructosamine in serum. Clin Chem 31:1550–1554

    PubMed  CAS  Google Scholar 

  39. Baker JR, Zyzak DV, Thorpe SR, Baynes JW (1993) Mechanism of fructosamine assay: evidence against role of superoxide as intermediate in nitroblue tetrazolium reduction. Clin Chem 39:2460–2465

    PubMed  CAS  Google Scholar 

  40. Coussons PJ, Jacoby J, McKay A, Kelly SM, Price NC, Hunt JV (1997) Glucose modification of human serum albumin: a structural study. Free Radic Biol Med 22:1217–1227

    Article  PubMed  CAS  Google Scholar 

  41. Nie CL, Wang XS, Liu Y, Perrett S, He RQ (2007) Amyloid-like aggregates of neuronal tau induced by formaldehyde promote apoptosis of neuronal cells. BMC Neurosci 8:9

    Article  PubMed  CAS  Google Scholar 

  42. Mayo L, Stein R (2007) Characterization of LPS and interferon-gamma triggered activation-induced cell death in N9 and primary microglial cells: induction of the mitochondrial gateway by nitric oxide. Cell Death Differ 14:183–186

    Article  PubMed  CAS  Google Scholar 

  43. Tsou CL (1988) Folding of the nascent peptide chain into a biologically active protein. Biochemistry 27:1809–1812

    Article  PubMed  CAS  Google Scholar 

  44. Xu YJ, Wu XQ, Liu W, Lin XH, Chen JW, He RQ (2002) A convenient assay of glycoserum by nitroblue tetrazolium with iodoacetamide. Clin Chim Acta 325:127–131

    Article  PubMed  CAS  Google Scholar 

  45. Ikeda K, Higashi T, Sano H, Jinnouchi Y, Yoshida M, Araki T, Ueda S, Horiuchi S (1996) N (epsilon)-(carboxymethyl)lysine protein adduct is a major immunological epitope in proteins modified with advanced glycation end products of the Maillard reaction. Biochemistry 35:8075–8083

    Article  PubMed  CAS  Google Scholar 

  46. Swamy MJ, Surolia A (1989) Studies on the tryptophan residues of soybean agglutinin. Involvement in saccharide binding. Biosci Rep 9:189–198

    Article  PubMed  CAS  Google Scholar 

  47. Naiki H, Higuchi K, Hosokawa M, Takeda T (1989) Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavin T1. Anal Biochem 177:244–249

    Article  PubMed  CAS  Google Scholar 

  48. Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 33:95–130

    Article  PubMed  CAS  Google Scholar 

  49. Gong CX, Liu F, Grundke-Iqbal I, Iqbal K (2005) Post-translational modifications of tau protein in Alzheimer’s disease. J Neural Transm 112:813–838

    Article  PubMed  CAS  Google Scholar 

  50. Harrington CR, Colaco CA (1994) Alzheimer’s disease. A glycation connection. Nature 370:247–248

    Article  PubMed  CAS  Google Scholar 

  51. Wang JZ, Grundke-Iqbal I, Iqbal K (1996) Glycosylation of microtubule-associated protein tau: an abnormal posttranslational modification in Alzheimer’s disease. Nat Med 2:871–875

    Article  PubMed  CAS  Google Scholar 

  52. Robertson LA, Moya KL, Breen KC (2004) The potential role of tau protein O-glycosylation in Alzheimer’s disease. J Alzheimers Dis 6:489–495

    PubMed  CAS  Google Scholar 

  53. Bancher C, Grundke-Iqbal I, Iqbal K, Fried VA, Smith HT, Wisniewski HM (1991) Abnormal phosphorylation of tau precedes ubiquitination in neurofibrillary pathology of Alzheimer disease. Brain Res 539:11–18

    Article  PubMed  CAS  Google Scholar 

  54. Murthy SN, Wilson JH, Lukas TJ, Kuret J, Lorand L (1998) Cross-linking sites of the human tau protein, probed by reactions with human transglutaminase. J Neurochem 71:2607–2614

    PubMed  CAS  Google Scholar 

  55. Tucholski J, Kuret J, Johnson GV (1999) Tau is modified by tissue transglutaminase in situ: possible functional and metabolic effects of polyamination. J Neurochem 73:1871–1880

    PubMed  CAS  Google Scholar 

  56. Horiguchi T, Uryu K, Giasson BI, Ischiropoulos H, LightFoot R, Bellmann C, Richter-Landsberg C, Lee VM, Trojanowski JQ (2003) Nitration of tau protein is linked to neurodegeneration in tauopathies. Am J Pathol 163:1021–1031

    PubMed  CAS  Google Scholar 

  57. Wang JZ, Gong CX, Zaidi T, Grundke-Iqbal I, Iqbal K (1995) Dephosphorylation of Alzheimer paired helical filaments by protein phosphatase-2A and -2B. J Biol Chem 270:4854–4860

    Article  PubMed  CAS  Google Scholar 

  58. Hasegawa Y, Suehiro A, Higasa S, Namba M, Kakishita E (2002) Enhancing effect of advanced glycation end products on serotonin-induced platelet aggregation in patients with diabetes mellitus. Thromb Res 107:319–323

    Article  PubMed  CAS  Google Scholar 

  59. Koga K, Yamagishi S, Okamoto T, Inagaki Y, Amano S, Takeuchi M, Makita Z (2002) Serum levels of glucose-derived advanced glycation end products are associated with the severity of diabetic retinopathy in type 2 diabetic patients without renal dysfunction. Int J Clin Pharmacol Res 22:13–17

    PubMed  CAS  Google Scholar 

  60. Scott ML, Nesheim MC, Young RJ (1982) Nutrition of the chicken. Scott, Ithaca, pp 100–102

    Google Scholar 

  61. Pliml W, von Arnim T, Stablein A, Hofmann H, Zimmer HG, Erdmann E (1992) Effects of ribose on exercise-induced ischaemia in stable coronary artery disease. Lancet 340:507–510

    Article  PubMed  CAS  Google Scholar 

  62. Schweers O, Schonbrunn-Hanebeck E, Marx A, Mandelkow E (1994) Structural studies of tau protein and Alzheimer paired helical filaments show no evidence for beta-structure. J Biol Chem 269:24290–24297

    PubMed  CAS  Google Scholar 

  63. Rosenberg KJ, Ross JL, Feinstein HE, Feinstein SC, Israelachvili J (2008) Complementary dimerization of microtubule-associated tau protein: implications for microtubule bundling and tau-mediated pathogenesis. Proc Natl Acad Sci USA 105:7445–7450

    Article  PubMed  CAS  Google Scholar 

  64. Grandhee SK, Monnier VM (1991) Mechanism of formation of the Maillard protein cross-link pentosidine. Glucose, fructose, and ascorbate as pentosidine precursors. J Biol Chem 266:11649–11653

    PubMed  CAS  Google Scholar 

  65. Wei Y, Chen L, Chen J, Ge L, He RQ (2009) Rapid glycation with d-ribose induces globular amyloid-like aggregations of BSA with high cytotoxicity to SH-SY5Y cells. BMC Cell Biol 10:10

    Article  PubMed  CAS  Google Scholar 

  66. Yan SD, Chen X, Schmidt AM, Brett J, Godman G, Zou YS, Scott CW, Caputo C, Frappier T, Smith MA (1994) Glycated tau protein in Alzheimer disease: a mechanism for induction of oxidant stress. Proc Natl Acad Sci USA 91:7787–7791

    Article  PubMed  CAS  Google Scholar 

  67. Day JF, Thorpe SR, Baynes JW (1979) Nonenzymatically glucosylated albumin. In vitro preparation and isolation from normal human serum. J Biol Chem 254:595–597

    PubMed  CAS  Google Scholar 

  68. Degenhardt TP, Thorpe SR, Baynes JW (1998) Chemical modification of proteins by methylglyoxal. Cell Mol Biol (Noisy-le-grand) 44:1139–1145

    CAS  Google Scholar 

  69. McCance DR, Dyer DG, Dunn JA, Bailie KE, Thorpe SR, Baynes JW, Lyons TJ (1993) Maillard reaction products and their relation to complications in insulin-dependent diabetes mellitus. J Clin Invest 91:2470–2478

    Article  PubMed  CAS  Google Scholar 

  70. Alikhani M, Maclellan CM, Raptis M, Vora S, Trackman PC, Graves DT (2007) Advanced glycation end products induce apoptosis in fibroblasts through activation of ROS, MAP kinases, and the FOXO1 transcription factor. Am J Physiol Cell Physiol 292:C850–C856

    Article  PubMed  CAS  Google Scholar 

  71. Rofina JE, Singh K, Skoumalova-Vesela A, van Ederen AM, van Asten AJ, Wilhelm J, Gruys E (2004) Histochemical accumulation of oxidative damage products is associated with Alzheimer-like pathology in the canine. Amyloid 11:90–100

    Article  PubMed  CAS  Google Scholar 

  72. Munch G, Kuhla B, Luth HJ, Arendt T, Robinson SR (2003) Anti-AGEing defences against Alzheimer’s disease. Biochem Soc Trans 31:1397–1399

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Xinyong Chen (Laboratory of Biophysics and Surface Analysis, School of Pharmacy, The University of Nottingham, Nottingham, NG7 2RD, UK) for his processing of AFM imaging. This project was supported by the following grants: NSFB-06J11, NSFC-30621004, 973-project-2006CB500703, and CAS-KSCX2-YW-R-119.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongqiao He.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 106 kb)

Supplementary material 2 (PDF 124 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Wei, Y., Wang, X. et al. d-Ribosylated Tau forms globular aggregates with high cytotoxicity. Cell. Mol. Life Sci. 66, 2559–2571 (2009). https://doi.org/10.1007/s00018-009-0058-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0058-7

Keywords

Navigation