Skip to main content

Advertisement

Log in

Processing of peptide and hormone precursors at the dibasic cleavage sites

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Many functionally important cellular peptides and proteins, including hormones, neuropeptides, and growth factors, are synthesized as inactive precursor polypeptides, which require post-translational proteolytic processing to become biologically active polypeptides. This is achieved by the action of a relatively small number of proteases that belong to a family of seven subtilisin-like proprotein convertases (PCs) including furin. In view of this, this review focuses on the importance of privileged secondary structures and of given amino acid residues around basic cleavage sites in substrate recognition by these endoproteases. In addition to their participation in normal cell functions, PCs are crucial for the initiation and progress of many important diseases. Hence, these proteases constitute potential drug targets in medicine. Accordingly, this review also discusses the approaches used to shed light on the cleavage preference and the substrate specificity of the PCs, a prerequisite to select which PCs are promising drug targets in each disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Myers R (1994) Neuroactive peptides: unique phases in research on mammalian brain over three decades. Peptides 15:367–381

    PubMed  CAS  Google Scholar 

  2. Brakch N, El Abida B, Rholam M (2006) Functional role of β-turn in polypeptide structure and its use as template to design therapeutic agents. Curr Med Chem Cent Nerv Syst Agent 6:163–173

    CAS  Google Scholar 

  3. Bennett G, Ballard T, Watson C, Fone K (1997) Effect of neuropeptides on cognitive function. Exp Gerontol 32:451–469

    PubMed  CAS  Google Scholar 

  4. Clynen E, De Loof A, Schoofs L (2003) The use of peptidomics in endocrine research. Gen Comp Endocrinol 132:1–9

    PubMed  CAS  Google Scholar 

  5. Strand F (2003) Neuropeptides: general characteristics and neuropharmaceutical potential in treating CNS disorders. Prog Drug Res 61:1–37

    PubMed  CAS  Google Scholar 

  6. Holmes A, Heilig M, Rupniak N, Steckler T, Griebel G (2003) Neuropeptide systems as novel therapeutic targets for depression and anxiety disorders. Trends Pharmacol Sci 24:580–588

    PubMed  CAS  Google Scholar 

  7. Shojo H, Kaneko Y (2000) Characterization and expression of oxytocin and the oxytocin receptor. Mol Genet Metab 71:552–558

    PubMed  CAS  Google Scholar 

  8. Gimpl G, Fahrenholz F (2001) The oxytocin receptor system: structure function and regulation. Physiol Rev 81:629–683

    PubMed  CAS  Google Scholar 

  9. Zaoral M (1985) Vasopressin analogues with high and specific antidiuretic activity. Int J Pept Protein Res 25:561–574

    PubMed  CAS  Google Scholar 

  10. Schott P, Hokfelt T, Ogren S (2000) Galanin and spatial learning in the rat. Evidence for a differential role for galanin in subregions of the hippocampal formation. Neuropharmacology 39:1386–1403

    PubMed  CAS  Google Scholar 

  11. Steiner R, Hohmann J, Holmes A, Wrenn C, Cadd G, Juréus A, Clifton D, Luo M, Gutshall M, Ma S, Mufson E, Crawley J (2001) Galanin transgenic mice display cognitive and neurochemical deficits characteristic of Alzheimer’s disease. Proc Natl Acad Sci USA 98:4184–4189

    PubMed  CAS  Google Scholar 

  12. Holsboer F (2003) Corticotropin-releasing hormone modulators and depression. Curr Opin Invest Drugs 4:46–50

    CAS  Google Scholar 

  13. Kaschina E, Unger T (2003) Angiotensin AT1/AT2 receptors: regulation, signaling and function. Blood Press 12:70–88

    PubMed  CAS  Google Scholar 

  14. Gendron L, Oligny J, Payet M, Gallo-Payet N (2003) Cyclic AMP-independent involvement of Rap1/B-Raf in the angiotensin II AT2 receptor signaling pathway in NG108-15 Cells. J Biol Chem 278(6):3606–3614

    PubMed  CAS  Google Scholar 

  15. Barker R (1996) Tachykinins, neurotrophism and neurodegenerative diseases: a critical review on the possible role of tachykinins in the aetiology of CNS diseases. Rev Neurosci 7:187–214

    PubMed  CAS  Google Scholar 

  16. Law P, Loh H (1999) Regulation of opioid receptor activities. J Pharmacol Exp Ther 289:607–624

    PubMed  CAS  Google Scholar 

  17. Felig P, Frohman L (1981) Anterior pituitary hormones. In: Endocrinology and metabolism. McGraw-Hill, New York, pp 293–297

  18. Norris D (1997) Tropic hormones of the adenohypophysis. In: Vertebrate endocrinology. Academic, San Diego, pp 137–141

  19. Nakai K (2001) Prediction of in vivo fates of proteins in the era of genomics and proteomics. J Struct Biol 134:103–116

    PubMed  CAS  Google Scholar 

  20. Hubbard S, Beynon R, Thornton J (1998) Assessment of conformational parameters as predictors of limited proteolytic sites in native protein structures. Protein Eng 11:349–359

    PubMed  CAS  Google Scholar 

  21. Shinde U, Inouye M (2000) Intramolecular chaperones: polypeptide extensions that modulate protein folding. Cell Dev Biol 11:35–44

    CAS  Google Scholar 

  22. Fontana A, Polverino de Laureto P, De Filippis V, Scaramella E, Zambonin M (2004) Protein structure by limited proteolysis. Acta Biochim Pol 51:299–321

    PubMed  CAS  Google Scholar 

  23. Turk B (2006) Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 5:785–799

    PubMed  CAS  Google Scholar 

  24. Steiner D (1998) The proprotein convertases. Curr Opin Chem Biol 2:31–39

    PubMed  CAS  Google Scholar 

  25. Rockwell N, Krysan D, Komiyama T, Fuller R (2002) Precursor processing by Kex2/furin proteases. Chem Rev 102:4525–4548

    PubMed  CAS  Google Scholar 

  26. Seidah N, Prat A (2002) Precursor convertases in the secretory pathway, cytosol and extracellular milieu. Essays Biochem 38:79–94

    PubMed  CAS  Google Scholar 

  27. Fugere M, Day R (2005) Cutting back on proprotein convertases: the latest approaches to pharmacological inhibition. Trends Pharmacol Sci 26:294–301

    PubMed  CAS  Google Scholar 

  28. Bataille D (2007) Pro-protein convertases in intermediary metabolism: islet hormones, brain/gut hormones and integrated physiology. J Mol Med 85:673–684

    PubMed  CAS  Google Scholar 

  29. Hook V, Funkelstein L, Lu D, Bark S, Wegrzyn J, Hwang S-R (2008) Proteases for processing proneuropeptides into peptide neurotransmitters and hormones. Annu Rev Pharmacol Toxicol 48:393–423

    PubMed  CAS  Google Scholar 

  30. Henrich S, Lindberg I, Bode W, Than M (2005) Proprotein convertase models based on the crystal structures of furin and kexin: explanation of their specificity. J Mol Biol 345:211–227

    PubMed  CAS  Google Scholar 

  31. Arolas J, Vendrell J, Aviles F, Fricker L (2007) Metallocarboxypeptidases: emerging drug targets in biomedicine. Curr Pharm Des 13:349–366

    PubMed  CAS  Google Scholar 

  32. Eipper B, Stoffers D, Mains R (1992) The biosynthesis of neuropeptides: peptide alpha-amidation. Annu Rev Neurosci 15:57–85

    PubMed  CAS  Google Scholar 

  33. Wilkinson W (2006) Roles of acetylation and other post-translational modification in melanocortin function and interactions with endorphins. Peptides 27:453–471

    PubMed  CAS  Google Scholar 

  34. Loh Y, Gainer H (1979) The role of glycosylation on the biosynthesis, degradation, and secretion of the ACTH-beta-lipotropin common precursor and its peptide products. FEBS Lett 96:269–272

    Google Scholar 

  35. Cain B, Connolly K, Blum A, Vishnuvardhan D, Marchand J, Beinfeld M (2003) Distribution and colocalization of cholecystokinin with the prohormone convertase enzymes PC1, PC2, and PC5 in rat brain. J Comp Neurol 467:307–325

    PubMed  CAS  Google Scholar 

  36. Patel Y, Galanopoulou A, Rabbani S, Liu J, Ravazzola M, Amherdt M (1997) Somatostatin-14, somatostatin-28, and prosomatostatin1–10 are independently and efficiently processed from prosomatostatin in the constitutive secretory pathway in islet somatostatin tumor cells (1027B2). Mol Cell Endocrinol 131:183–194

    PubMed  CAS  Google Scholar 

  37. Nillni E (2007) Regulation of prohormone convertases in hypothalamic neurons: implications for prothyrotropin-releasing hormone and proopiomelanocortin. Endocrinology 148:4191–4200

    PubMed  CAS  Google Scholar 

  38. Thomas G (2002) Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat Rev Mol Cell Biol 3:753–766

    PubMed  CAS  Google Scholar 

  39. Taylor N, Van De Ven W, Creemers J (2003) Curbing activation: proprotein convertases in homeostasis and pathology. FASEB J 7:1215–1227

    Google Scholar 

  40. Scamuffa N, Calvo F, Chrétien M, Seidah N, Khatib A (2006) Proprotein convertases: lessons from knockouts. FASEB J 20:1954–1963

    PubMed  CAS  Google Scholar 

  41. Seidah N, Mayer G, Zaid A, Rousselet E, Nassoury N, Poirier S, Essalmani R, Prat A (2008) The activation and physiological functions of the proprotein convertases. IJBCB 40:1111–1125

    CAS  Google Scholar 

  42. Seidah N, Khatib A, Prat A (2006) The proprotein convertases and their implication in sterol and/or lipid metabolism. Biol Chem 387:871–877

    PubMed  CAS  Google Scholar 

  43. Rholam M, Nicolas N, Cohen P (1986) Precursors for peptide hormones share common secondary structures forming features at the proteolytic processing sites. FEBS Lett 207:1–6

    PubMed  CAS  Google Scholar 

  44. Bek E, Berry R (1990) Prohormonal cleavage sites are associated with omega loops. Biochemistry 29:178–183

    PubMed  CAS  Google Scholar 

  45. Monsalve R, Menéndez-Arias L, López-Otin C, Rodriguez R (1990) Beta-turns as structural motifs for the proteolytic processing of seed proteins. FEBS Lett 263:209–212

    PubMed  CAS  Google Scholar 

  46. Rholam M, Brakch N, Germain D, Thomas D, Fahy C, Boussetta H, Boileau G, Cohen P (1995) Role of amino acid sequences flanking dibasic cleavage sites in precursor proteolytic processing. The importance of the first residue C-terminal of the cleavage site. Eur J Biochem 227:707–714

    PubMed  CAS  Google Scholar 

  47. Devi L (1991) Consensus sequence for processing of peptide precursors at monobasic sites. FEBS Lett 280:189–194

    PubMed  CAS  Google Scholar 

  48. Veenstra J (2000) Mono- and dibasic proteolytic cleavage sites in insect neuroendocrine peptide precursors. Arch Insect Biochem Physiol 43:49–63

    PubMed  CAS  Google Scholar 

  49. Hummon A, Hummon N, Corbin R, Li L, Vilim F, Weiss K, Sweedler J (2003) From precursor to final peptides: a statistical sequence-based approach to predicting prohormone processing. J Proteome Res 2:650–656

    PubMed  CAS  Google Scholar 

  50. Duckert P, Brunak S, Blom N (2004) Prediction of proprotein convertase cleavage Sites. Protein Eng Des Sel 17:107–112

    PubMed  CAS  Google Scholar 

  51. Southey B, Rodriguez-Zas S, Sweedler J (2006) Prediction of neuropeptide prohormone cleavages with application to Rfamides. Peptides 27:1087–1098

    PubMed  CAS  Google Scholar 

  52. Amare A, Hummon A, Southey B, Zimmerman T, Rodriguez-Zas S, Sweedler J (2006) Bridging neuropeptidomics and genomics with bioinformatics: prediction of mammalian neuropeptide prohormone processing. J Proteome Res 5:1162–1167

    PubMed  CAS  Google Scholar 

  53. Southey B, Sweedler J, Rodriguez-Zas S (2008) Prediction of neuropeptide cleavage sites in insects. Bioinformatics 24:815–825

    PubMed  CAS  Google Scholar 

  54. Tegge A, Southey B, Southey B (2008) Comparative analysis of neuropeptides cleavage sites in human, mouse, rat and cattle. Mamm Genome 19:106–120

    PubMed  CAS  Google Scholar 

  55. Rholam M, Cohen P (1997) Peptides as tools for studying propeptide and proprotein processing. Anal Chim Acta 352:155–178

    CAS  Google Scholar 

  56. Pribic R, van Stokkum I, Chapman D, Haris P, Bloemendal M (1993) Protein secondary structure from Fourier transform infrared and/or circular dichroism. Anal Biochem 214:366–378

    PubMed  CAS  Google Scholar 

  57. Woody R, Dunker A (1996) In: Fasman GD (ed) Circular dichroism and the conformational analysis of biomolecules. Plenum Press, New York, pp 109–157

  58. Paolillo L, Simonetti M, Brakch N, D’Auria G, Saviano M, Dettin M, Rholam M, Scatturin A, Di Bello C, Cohen P (1992) Evidence for the presence of a secondary structure at the dibasic processing site of prohormone: the pro-ocytocin model. EMBO J 11:2399–2405

    PubMed  CAS  Google Scholar 

  59. Falcigno L, Paolillo L, D’Auria G, Saviano M, Simonetti M, Di Bello C (1996) NMR conformational studies on a synthetic peptide reproducing the [1–20] processing domain of the pro-ocytocin-neurophysin precursor. Biopolymers 39:837–848

    PubMed  CAS  Google Scholar 

  60. Velikson B, Cohen P, Rholam M, Rose P, Wang B, Smith J (1998) Structural modeling of the pro-ocytocin-neurophysin precursor. Protein Eng 11:909–916

    PubMed  CAS  Google Scholar 

  61. Rayne R, O’shea M (1993) Structural requirements for processing of pro-adipokinetic hormone I. Eur J Biochem 217:905–911

    PubMed  CAS  Google Scholar 

  62. Weiss A, Franck H, Khait A, Heiney R, Shoelson S, Neuringer L (1990) NMR and photo-CIDNP studies of human proinsulin and prohormone processing intermediates with application to endopeptidase recognition. Biochemistry 29:8389–8401

    PubMed  CAS  Google Scholar 

  63. Brakch N, Rholam M, Boussetta H, Cohen P (1993) Role of beta-turn in proteolytic processing of peptide hormone precursors at dibasic sites. Biochemistry 32:4925–4930

    PubMed  CAS  Google Scholar 

  64. Glandières JM, Hertzog M, Lazar N, Brakch N, Cohen P, Alpert B, Rholam M (2002) Kinetics of precursor cleavage at the dibasic sites. Involvement of peptide dynamics. FEBS Lett 16:75–79

    Google Scholar 

  65. Brakch N, Rholam M, Simonetti M, Cohen P (2000) Favourable side-chain orientation of cleavage site dibasic residues of prohormone in proteolytic processing by prohormone convertase 1/3. Eur J Biochem 267:1626–1632

    PubMed  CAS  Google Scholar 

  66. Rozan L, Krysan D, Rockwell N, Fuller R (2004) Plasticity of extended subsites facilitates divergent substrate recognition by Kex2 and furin. J Biol Chem 279:35656–35663

    PubMed  CAS  Google Scholar 

  67. Bergeron E, Basak A, Decroly E, Seidah N (2003) Processing of α4 integrin by the proprotein convertases: histidine at position P6 regulates cleavage. Biochem J 373:475–484

    PubMed  CAS  Google Scholar 

  68. Lazar N, Brakch N, Panchal M, Fahy C, Rholam M (2007) Reactivity of basic amino acid pairs in prohormone processing: model of pro-ocytocin/neurophysin processing domain. Arch Biochem Biophys 463:231–236

    PubMed  CAS  Google Scholar 

  69. Sillerud L, Larson R (2005) Design and structure of peptide and peptidomimetic antagonists of protein-protein interaction. Curr Protein Pept Sci 6:151–169

    PubMed  CAS  Google Scholar 

  70. Chou K-C (2000) Prediction of tight turns and their types in proteins. Anal Biochem 286:1–16

    PubMed  CAS  Google Scholar 

  71. Fuchs P, Alix A (2005) High accuracy prediction of β-turns and their types using propensities and multiple alignments. Proteins Struct Funct Bioinform 59:828–839

    CAS  Google Scholar 

  72. Marcelino A, Gierasch L (2008) Roles of β-turns in protein folding: from peptide models to protein engineering. Biopolymers 89:380–391

    PubMed  CAS  Google Scholar 

  73. Lechan R, Wu P, Jackson I, Wolfe H, Cooperman S, Mandel G, Goodman R (1986) Thyrotropin-releasing hormone precursor: characterization in rat brain. Science 231:159–161

    PubMed  CAS  Google Scholar 

  74. Takahashi H, Teranishi Y, Nakanishi S, Numa S (1981) Isolation and structural organization of the human corticotropin-beta-lipotropin precursor gene. FEBS Lett 135:97–102

    PubMed  CAS  Google Scholar 

  75. Fontès G, Lajoix A, Bergeron F, Cadel S, Prat A, Foulon T, Gross R, Dalle S, Le-Nguyen D, Tribillac F, Bataille D (2005) Miniglucagon (MG)-generating endopeptidase, which processes glucagon into MG, is composed of N-arginine dibasic convertase and aminopeptidase B. Endocrinology 146:702–712

    PubMed  Google Scholar 

  76. Olias G, Viollet C, Kusserow H, Epelbaum J, Meyerhof W (2004) Regulation and function of somatostatin receptors. J Neurochem 89:1057–1091

    PubMed  CAS  Google Scholar 

  77. Bourdais J, Cohen P (1991) Post-translational proteolytic maturation of prosomatostatin. Cellular and molecular approach. Ann Endocrinol 52:339–347

    CAS  Google Scholar 

  78. Puebla L, Mouchantaf R, Sasi R, Khare S, Bennett H, James S, Patel Y (1999) Processing of rat preprocortistatin in mousse AtT-20. J Neurochem 73:1273–1277

    PubMed  CAS  Google Scholar 

  79. Brakch N, Galanopoulou A, Patel Y, Boileau G, Seidah N (1995) Comparative proteolytic processing of rat prosomatostatin by the convertases PC1, PC2, furin, PACE4 and PC5 in constitutive and regulated secretory pathways. FEBS Lett 362:143–146

    PubMed  CAS  Google Scholar 

  80. Chesneau V, Pierotti A, Prat A, Gaudoux F, Foulon T, Cohen P (1994) N-arginine dibasic convertase (NRD convertase): a newcomer to the family of processing endopeptidases. Biochimie 76:234–240

    PubMed  CAS  Google Scholar 

  81. Mouchantaf R, Watt H, Sulea T, Seidah N, Alturaihi H, Patel Y, Kumar U (2004) Prosomatostatin is proteolytically processed at the amino terminal segment by subtilase SKI-1. Regul Pept 120:133–140

    PubMed  CAS  Google Scholar 

  82. Gomez S, Boileau G, Zollinger L, Nault C, Rholam M, Cohen P (1989) Site-specific mutagenesis identifies amino acid residues critical in prohormone processing. EMBO J 8:2911–2916

    PubMed  CAS  Google Scholar 

  83. Brakch N, Boileau G, Simonetti M, Nault C, Joseph-Bravo P, Rholam M, Cohen P (1993) Prosomatostatin processing in Neuro2A cells. Role of beta-turn structure in the vicinity of the Arg–Lys cleavage site. Eur J Biochem 16:39–47

    Google Scholar 

  84. Brakch N, Rholam M (2003) Differential proteolytic processing of prosomatostatin. Curr Top Biochem Res 5:193–207

    Google Scholar 

  85. Brakch N, Rholam M, Nault C, Boileau G, Cohen P (1991) Differential processing of hormone precursor. Independent production of somatostatins 14 and 28 in transfected neuroblastoma 2A cells. FEBS Lett 282:363–367

    PubMed  CAS  Google Scholar 

  86. MacArthur M, Thornton J (1991) Influence of proline residues on protein conformation. J Mol Biol 218:397–412

    PubMed  CAS  Google Scholar 

  87. Vanhoof G, Goossens F, De Meester I, Hendriks D, Scharpe S (1995) Proline motifs in peptides and their biological processing. FASEB J 8:736–744

    Google Scholar 

  88. Munoz V, Serrano L (1994) Elucidating the folding problem of helical peptides using empirical parameters. Nat Struct Biol J 1:399–409

    CAS  Google Scholar 

  89. Brakch N, Lazar N, Panchal M, Allemandou F, Boileau G, Cohen P, Rholam M (2002) The somatostatin-28(1–12)-NPAMAP sequence: an essential helical-promoting motif governing prosomatostatin processing at mono- and di-basic sites. Biochemistry 41:1630–1639

    PubMed  CAS  Google Scholar 

  90. Roebroek A, Umans L, Pauli I, Robertson E, van Leuven F, Van de Ven W, Constam D (1998) Failure of ventral closure and axial rotation in embryos lacking the proprotein convertase furin. Development 125:4863–4876

    PubMed  CAS  Google Scholar 

  91. Essalmani R, Hamelin J, Marcinkiewwicz E, Chamberland A, Mbikay M, Chretien C, Seidah N, Prat A (2006) Deletion of the gene encoding proprotein convertase 5/6 causes early embryonic lethality in the mouse. Mol Cell Biol 26:354–361

    PubMed  CAS  Google Scholar 

  92. Mbikay M, Tadros H, Ishida N, Lerner C, De Lamirande E, Chen A, El-Alfy M, Clermont Y, Seidah N, Chretien M, Gagnon C, Simpson E (1997) Impaired fertility in mice deficient for the testicular germ-cell protease PC4. Proc Natl Acad Sci USA 94:6842–6846

    PubMed  CAS  Google Scholar 

  93. Bassi D, Fu J, Lopez de Cicco R, Klein-Szanto A (2005) Proprotein convertases: “master switches” in the regulation of tumor growth and progression. Mol Carcinog 44:151–161

    PubMed  CAS  Google Scholar 

  94. Stawowy P, Fleck E (2005) Proprotein convertases furin and PC5: targeting atherosclerosis and restenosis at multiple levels. J Mol Med 83:865–875

    PubMed  CAS  Google Scholar 

  95. Panchal M, Rholam M, Brakch N (2004) Abnormalities of peptide metabolism in Alzheimer disease. Curr Neurovasc Res 1:269–281

    Google Scholar 

  96. Zambon MC (2001) The pathogenesis of influenza in humans. Rev Med Virol 11:227–241

    PubMed  CAS  Google Scholar 

  97. Creemers J, Dominguez D, Plets E, Serneels L, Taylor N, Multhaup G, Craessaerts K, Annaert W, De Strooper B (2000) Processing of beta-secretase (Bace) by furin and other members of the proprotein convertase family. J Biol Chem 276:4211–4217

    PubMed  Google Scholar 

  98. Pinnix I, Council J, Roseberry B, Onstead L, Mallender W, Sucic J, Sambamurti K (2001) Convertases other than furin cleave β-secretase to its mature form. FASEB J 15:1810–1812

    PubMed  CAS  Google Scholar 

  99. Lopez-Perez E, Zhang Y, Frank S, Creemers J, Seidah N, Checler F (2001) Constitutive α-secretase cleavage of the β-amyloid precursor protein in the furin-deficient LoVo cell line: involvement of the prohormone convertase 7 and the disintegrin metalloprotease ADAM-10. J Neurochem 76:1532–1539

    PubMed  CAS  Google Scholar 

  100. Endres K, Anders A, Kojro E, Gilbert S, Fahrenholz F, Postina R (2003) Tumor necrosis factor-α converting enzyme is processed by proprotein-convertases to its mature form which is degraded upon phorbol ester stimulation. Eur J Biochem 270:2386–2393

    PubMed  CAS  Google Scholar 

  101. Hiraoka Y, Ohno M, Yoshida K, Okawa K, Tomimoto H, Kita T, Nishi E (2007) Enhancement of alpha-secretase cleavage of amyloid precursor protein by a metalloendopeptidase nardilysin. J Neurochem 102:1595–1605

    PubMed  CAS  Google Scholar 

  102. Bassi D, Mahloogi H, Al-Saleem L, Lopez de Cicco R, Ridge J, Klein-Szanto A (2001) Elevated furin expression in aggressive human head and neck tumours and tumor cell lines. Mol Carcinog 31:224–232

    PubMed  CAS  Google Scholar 

  103. Leitlein J, Aulwurm S, Waltereit R, Naumann U, Wagenknecht B, Garten W, Weller M, Platten M (2001) Processing of immunosuppressive pro-TGF-beta 1, 2 by human glioblastoma cells involves cytoplasmic and secreted furin-like proteases. J Immunol 166:7238–7243

    PubMed  CAS  Google Scholar 

  104. Siegfried G, Basak A, Cromlish J, Benjannet S, Marcinkiewicz J, Chretien M, Seidah N, Khatib A (2003) The secretory proprotein convertases furin, PC5, and PC7 activate VEGF-C to induce tumorigenesis. J Clin Invest 111:1723–1732

    PubMed  CAS  Google Scholar 

  105. Khatib A, Siegfried G, Prat A, Luis J, Chretien M, Metrakos P, Seidah N (2001) Inhibition of proprotein convertases is associated with loss of growth and tumorigenicity of HT-29 human colon carcinoma cells: importance of insulin like growth factor-1 (IGF-1) receptor processing in IGF-1-mediated functions. J Biol Chem 276:30686–30693

    PubMed  CAS  Google Scholar 

  106. Coppola J, Bhojani M, Ross B, Rehemtulla A (2008) A small-molecule furin inhibitor inhibits cancer cell motility and invasiveness. Neoplasia 10:363–370

    PubMed  CAS  Google Scholar 

  107. Gordon V, Klimpel K, Arora N, Henderson M, Leppla S (1995) Proteolytic activation of bacterial toxins by eukaryotic cells is performed by furin and by additional cellular proteases. Infect Immun 63:82–87

    PubMed  CAS  Google Scholar 

  108. Beauregard K, Collier R, Swanson J (2000) Proteolytic activation of receptor-bound anthrax protective antigen on macrophages promotes its internalization. Cell Microbiol 2:251–258

    PubMed  CAS  Google Scholar 

  109. Basak A, Zhong M, Munzer J, Chretien M, Seidah N (2001) Implication of the proprotein convertases furin, PC5 and PC7 in the cleavage of surface glycoproteins of Hong Kong, Ebola and respiratory syncytial viruses: a comparative analysis with fluorogenic peptides. Biochem J 353:537–545

    PubMed  CAS  Google Scholar 

  110. Jean F, Thomas L, Molloy S, Liu G, Jarvis M, Nelson J, Thomas G (2000) A protein-based therapeutic for human cytomegalovirus infection. Proc Natl Acad Sci USA 97:2864–2869

    PubMed  CAS  Google Scholar 

  111. Peinado J, Kacprzak M, Leppla S, Lindberg I (2004) Cross-inhibition between furin and lethal factor inhibitors. Biochem Biophys Res Commun 321:601–605

    PubMed  CAS  Google Scholar 

  112. Shiryaev S, Remacle A, Ratnikov B, Nelson N, Savinov A, Wei G, Bottini M, Rega M, Parent A, Desjardins R, Fugere M, Day R, Sabet M, Pellecchia M, Liddington R, Smith J, Mustelin T, Guiney D, Lebl M, Strongin A (2007) Targeting host cell furin proprotein convertases as a therapeutic strategy against bacterial toxins and viral pathogens. J Biol Chem 282:20847–20853

    PubMed  CAS  Google Scholar 

  113. Holyoak T, Wilson M, Fenn T, Kettner C, Petsko G, Fuller R, Ringe D (2003) 2.4 Å resolution crystal structure of the prototypical hormone-processing protease Kex2 in complex with an Ala–Lys–Arg boronic acid inhibitor. Biochemistry 42:6709–6718

    PubMed  CAS  Google Scholar 

  114. Henrich S, Cameron A, Bourenkov G, Kiefersauer R, Huber R, Lindberg I, Bode W, Than M (2003) The crystal structure of the proprotein processing proteinase furin explains its stringent specificity. Nat Struct Biol 10:520–526

    PubMed  CAS  Google Scholar 

  115. Rockwell N, Thorner J (2004) The kindest cuts of all: crystal structures of Kex2 and furin reveal secrets of precursor processing. Trends Biochem Sci 29:80–87

    PubMed  CAS  Google Scholar 

  116. Sarac M, Cameron A, Lindberg I (2002) The furin inhibitor hexa-d-arginine blocks the activation of Pseudomonas aeruginosa exotoxin A in vivo. Infect Immun 70:7136–7139

    PubMed  CAS  Google Scholar 

  117. Kibler K, Miyazato A, Yedavalli V, Dayton A, Jacobs B, Dapolito G, Kim S, Jeang K (2004) Polyarginine inhibits gp160 processing by furin and suppresses productive human immunodeficiency virus type 1 infection. J Biol Chem 279:49055–49063

    PubMed  CAS  Google Scholar 

  118. Fugere M, Day R (2002) Inhibitors of the substilase-like pro-protein convertases (SPCs). Curr Pharm 8:549–562

    CAS  Google Scholar 

  119. Jiao G, Cregar L, Wang J, Millis S, Tang C, O’Malley S, Johnson A, Sareth S, Larson J, Thomas G (2006) Synthetic small molecule furin inhibitors derived from 2, 5-dideoxystreptamine. Proc Natl Acad Sci USA 103:19707–19712

    PubMed  CAS  Google Scholar 

  120. Remacle A, Shiryaev S, Oh E, Cieplak P, Srinivasan A, Wei G, Liddington R, Ratnikov B, Parent A, Desjardins R, Day R, Smith J, Lebl M, Strongin A (2008) Substrate cleavage analysis of furin and related proprotein convertases. A comparative study. J Biol Chem 283:20897–20906

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Rholam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rholam, M., Fahy, C. Processing of peptide and hormone precursors at the dibasic cleavage sites. Cell. Mol. Life Sci. 66, 2075–2091 (2009). https://doi.org/10.1007/s00018-009-0007-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0007-5

Keywords

Navigation