Skip to main content
Log in

Structure-based models of cadherin-mediated cell adhesion: the evolution continues

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Cadherins are glycoproteins that are responsible for homophilic, Ca2+-dependent cell-cell adhesion and play crucial roles in many cellular adhesion processes ranging from embryogenesis to the formation of neuronal circuits in the central nervous system. Many different experimental approaches have been used to unravel the molecular basis for cadherin-mediated adhesion. In particular, several high-resolution structures have provided models for cadherin-cadherin interactions that are illuminative in many respects yet contradictory in others. This review gives an overview of the structural studies of cadherins over the past decade while focusing on recent developments that reconcile some of the earlier findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Takeichi M. (1990) Cadherins: a molecular family important in selective cell-cell adhesion. Annu. Rev. Biochem. 59: 237–252

    Article  CAS  PubMed  Google Scholar 

  2. Gumbiner B. M. (1996) Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84: 345–357

    Article  CAS  PubMed  Google Scholar 

  3. Takeichi M. (1995) Morphogenetic roles of classic cadherins. Curr. Opin. Cell Biol. 7: 619–627

    Article  CAS  PubMed  Google Scholar 

  4. Tepass U., Truong K., Godt D., Ikura M. and Peifer M. (2000) Cadherins in embryonic and neural morphogenesis. Nat. Rev. Mol. Cell. Biol. 1: 91–100

    Article  CAS  PubMed  Google Scholar 

  5. Ranscht B. (2000) Cadherins: molecular codes for axon guidance and synapse formation. Int. J. Dev. Neurosci. 18: 643–651

    Article  CAS  PubMed  Google Scholar 

  6. Redies C. (2000) Cadherins in the central nervous system. Prog. Neurobiol. 61: 611–648

    Article  CAS  PubMed  Google Scholar 

  7. Christofori G. (2003) Changing neighbours, changing behaviour: cell adhesion molecule-mediated signalling during tumour progression. EMBO 122: 2318–2323

    Article  Google Scholar 

  8. Van Aken E., De Wever O., Correia da Rocha A. S. and Mareel M. (2001) Defective E-cadherin/catenin complexes in human cancer. Virchows Arch. 439: 725–751

    Article  PubMed  Google Scholar 

  9. Behrens J. (1999) Cadherins and catenins: role in signal transduction and tumor progression. Cancer Metastasis Rev. 18: 15–30

    Article  CAS  PubMed  Google Scholar 

  10. Christofori G. and Semb H. (1999) The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. Trends Biochem. Sci. 24: 73–76

    Article  CAS  PubMed  Google Scholar 

  11. Perl A. K., Wilgenbus P., Dahl U., Semb H. and Christofori G. (1998) A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 392: 190–193

    Article  CAS  PubMed  Google Scholar 

  12. Nose A., Tsuji K. and Takeichi M. (1990) Localization of specificity determining sites in cadherin cell adhesion molecules. Cell 61: 147–155

    Article  CAS  PubMed  Google Scholar 

  13. Kemler R. (1992) Classical cadherins. Semin. Cell Biol. 3: 149–155

    Article  CAS  PubMed  Google Scholar 

  14. Takeichi M., Hatta K., Nose A., Nagafuchi A. and Matsunaga M. (1989) Cadherin-mediated specific cell adhesion and animal morphogenesis. Ciba Found. Symp. 144: 243–249

    CAS  PubMed  Google Scholar 

  15. Yap A. S., Brieher W. M. and Gumbiner B. M. (1997) Molecular and functional analysis of cadherin-based adherens junctions. Annu. Rev. Cell. Dev. Biol. 13: 119–146

    Article  CAS  PubMed  Google Scholar 

  16. Koch A. W., Bozic D., Pertz O. and Engel J. (1999) Homophilic adhesion by cadherins. Curr. Opin. Struct. Biol. 9: 275–281

    Article  CAS  PubMed  Google Scholar 

  17. Aberle H., Schwartz H. and Kemler R. (1996) Cadherincatenin complex: protein interactions and their implications for cadherin function. J. Cell. Biochem. 61: 514–523

    Article  CAS  PubMed  Google Scholar 

  18. Angst B. D., Marcozzi C. and Magee A. I. (2001) The cadherin superfamily: diversity in form and function. J. Cell Sci. 114: 629–641

    CAS  PubMed  Google Scholar 

  19. Nollet F., Kools P and van Roy F. (2000) Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J. Mol. Biol. 299: 551–572

    Article  CAS  PubMed  Google Scholar 

  20. Gumbiner B. M. (2000) Regulation of cadherin adhesive activity. J. Cell Biol. 148: 399–404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Lilien J., Balsamo J., Arregui C. and Xu G. (2002) Turn-off, drop-out: functional state switching of cadherins. Dev. Dyn. 224: 18–29

    Article  CAS  PubMed  Google Scholar 

  22. Steinberg M. S. and McNutt P M. (1999) Cadherins and their connections: adhesion junctions have broader functions. Curr. Opin. Cell Biol. 11: 554–560

    Article  CAS  PubMed  Google Scholar 

  23. Yap A. S. and Kovacs E. M. (2003) Direct cadherin-activated cell signaling: a view from the plasma membrane. J. Cell Biol. 160:11–16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Pokutta S., Drees F., Takai Y., Nelson W. J. and Weis W. I. (2002) Biochemical and structural definition of the 1-afadin- and actinbinding sites of alpha-catenin. J. Biol. Chem. 277: 18868–18874

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Huber A. H. and Weis W. I. (2001) The structure of the betacatenin/E-cadherin complex and the molecular basis of diverse ligand recognition by beta-catenin. Cell 105: 391–402

    Article  CAS  PubMed  Google Scholar 

  26. Pokutta S. and Weis W. I. (2000) Structure of the dimerization and beta-catenin-binding region of alpha-catenin. Mol. Cell. 5: 533–543

    Article  CAS  PubMed  Google Scholar 

  27. Huber O. (2003) Structure and function of desmosomal proteins and their role in development and disease. Cell. Mol. Life Sci. 60: 1872–1890

    Article  CAS  PubMed  Google Scholar 

  28. Frank M. and Kemler R. (2002) Protocadherins. Curr. Opin. Cell Biol. 14: 557–562

    Article  CAS  PubMed  Google Scholar 

  29. Mareel M. and Leroy A. (2003) Clinical, cellular and molecular aspects of cancer invasion. Physiol. Rev. 83: 337–376

    Article  CAS  PubMed  Google Scholar 

  30. Dustin M. L. and Colman D. R. (2002) Neural and immunological synaptic relations. Science 298: 785–789

    Article  CAS  PubMed  Google Scholar 

  31. Goda Y. (2002) Cadherins communicate structural plasticity of presynaptic and postsynaptic terminals. Neuron 35: 1–3

    Article  CAS  PubMed  Google Scholar 

  32. Guthrie S. (2002) Neuronal development: sorting out motor neurons. Curr. Biol. 12: R488–R490

    Article  CAS  PubMed  Google Scholar 

  33. Huntley G. W., Gil O. and Bozdagi O. (2002) The cadherin family of cell adhesion molecules: multiple roles in synaptic plasticity. Neuroscientist 8: 221–233

    Article  CAS  PubMed  Google Scholar 

  34. Yagi T. (2003) Diversity of the cadherin-related neuronal receptor/protocadherin family and possible DNA rearrangement in the brain. Genes Cells 8: 1–8

    Article  CAS  PubMed  Google Scholar 

  35. Blaschuk O. W., Sullivan R., David S. and Pouliot Y. (1990) Identification of a cadherin cell adhesion recognition sequence. Dev. Biol. 139: 227–229

    Article  CAS  PubMed  Google Scholar 

  36. Brieher W. M., Yap A. S. and Gumbiner B. M. (1996) Lateral dimerization is required for the homophilic binding activity of C-cadherin. J. Cell Biol. 135: 487–496

    Article  CAS  PubMed  Google Scholar 

  37. Shan W. S., Koch A., Murray J., Colman D. R. and Shapiro L. (1999) The adhesive binding site of cadherins revisited. Biophys. Chem. 82: 157–163

    Article  CAS  PubMed  Google Scholar 

  38. Takeda H., Shimoyama Y., Nagafuchi A. and Hirohashi S. (1999) E-cadherin functions as a cis-dimer at the cell-cell adhesive interface in vivo. Nat. Struct. Bio.l 6: 310–312

    Article  CAS  Google Scholar 

  39. Yap A. S., Brieher W. M., Pruschy M. and Gumbiner B. M. (1997) Lateral clustering of the adhesive ectodomain: a fundamental determinant of cadherin function. Curr. Biol. 7: 308–315

    Article  CAS  PubMed  Google Scholar 

  40. Chappuis-Flament S., Wong E., Hicks L. D., Kay C. M. and Gumbiner B. M. (2001) Multiple cadherin extracellular repeats mediate homophilic binding and adhesion. J. Cell Biol. 154: 231–243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Kitagawa M., Natori M., Murase S., Hirano S., Taketani S. and Suzuki S. T. (2000) Mutation analysis of cadherin-4 reveals amino acid residues of EC1 important for the structure and function. Biochem. Biophys. Res. Commun. 271: 358–363

    Article  CAS  PubMed  Google Scholar 

  42. Shan W. S., Tanaka H., Phillips G. R., Arndt K., Yoshida M., Colman D. R. et al. (2000) Functional cis-heterodimers of N- and R-cadherins. J. Cell Biol. 148: 579–590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Shimoyama Y., Tsujimoto G., Kitajima M. and Natori M. (2000) Identification of three human type-II classic cadherins and frequent heterophilic interactions between different subclasses of type-II classic cadherins. Biochem. J. 349: 159–167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Tamura K., Shan W. S., Hendrickson W. A., Colman D. R. and Shapiro L. (1998) Structure-function analysis of cell adhesion by neural (N-) cadherin. Neuron 20: 1153–1163

    Article  CAS  PubMed  Google Scholar 

  45. Ozawa M. (2002) Lateral dimerization of the E-cadherin extracellular domain is necessary but not sufficient for adhesive activity. J. Biol. Chem. 277: 19600–19608

    Article  CAS  PubMed  Google Scholar 

  46. Troyanovsky R. B., Klingelhofer J. and Troyanovsky S. (1999) Removal of calcium ions triggers a novel type of intercadherin interaction. J. Cell Sci. 112: 4379–4387

    CAS  PubMed  Google Scholar 

  47. Chitaev N. A. and Troyanovsky S. M. (1998) Adhesive but not lateral E-cadherin complexes require calcium and catenins for their formation. J. Cell Biol. 142: 837–846

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Klingelhofer J., Laur O. Y., Troyanovsky R. B. and Troyanovsky S. M. (2002) Dynamic interplay between adhesive and lateral E-cadherin dimers. Mol. Cell. Biol. 22: 7449–7458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Troyanovsky R. B., Sokolov E. and Troyanovsky S. M. (2003) Adhesive and lateral E-cadherin dimers are mediated by the same interface. Mol. Cell. Biol. 23: 7965–7972

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Pokutta S., Herrenknecht K., Kemler R. and Engel J. (1994) Conformational changes of the recombinant extracellular domain of E- cadherin upon calcium binding. Eur. J. Biochem. 223: 1019–1026

    Article  CAS  PubMed  Google Scholar 

  51. Pertz O., Bozic D., Koch A. W., Fauser C., Brancaccio A. and Engel J. (1999) A new crystal structure, Ca2+ dependence and mutational analysis reveal molecular details of E-cadherin homoassociation. EMBO J. 18: 1738–1747

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Ahrens T., Pertz O., Haussinger D., Fauser C., Schulthess T. and Engel J. (2002) Analysis of heterophilic and homophilic interactions of cadherins using the c-Jun/c-Fos dimerization domains. J. Biol. Chem. 277: 19455–19460

    Article  CAS  PubMed  Google Scholar 

  53. Ahrens T., Lambert M., Pertz O., Sasaki T., Schulthess T., Mege R. M. et al. (2003) Homoassociation of VE-cadherin follows a mechanism common to ‘classical’ cadherins. J. Mol. Biol. 325: 733–742

    Article  CAS  PubMed  Google Scholar 

  54. Tomschy A., Fauser C., Landwehr R. and Engel J. (1996) Homophilic adhesion of E-cadherin occurs by a co-operative two-step interaction of N-terminal domains. EMBO J. 15: 3507–3514

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Sivasankar S., Gumbiner B. and Leckband D. (2001) Direct measurements of multiple adhesive alignments and unbinding trajectories between cadherin extracellular domains. Biophys. J. 80: 1758–1768

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Zhu B., Chappuis-Flament S., Wong E., Jensen I. E., Gumbiner B. M. and Leckband D. (2003) Functional analysis of the structural basis of homophilic cadherin adhesion. Biophys. J. 84: 4033–4042

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Sivasankar S., Brieher W., Lavrik N., Gumbiner B. and Leckband D. (1999) Direct molecular force measurements of multiple adhesive interactions between cadherin ectodomains. Proc. Natl. Acad. Sci. USA 96: 11820–11824

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Nagar B., Overduin M., Ikura M. and Rini J. M. (1996) Structural basis of calcium-induced E-cadherin rigidification and dimerization. Nature 380: 360–364

    Article  CAS  PubMed  Google Scholar 

  59. Overduin M., Harvey T. S., Bagby S., Tong K. I., Yau P., Takeichi M. et al. (1995) Solution structure of the epithelial cadherin domain responsible for selective cell adhesion. Science 267: 386–389

    Article  CAS  PubMed  Google Scholar 

  60. Overduin M., Tong K. I., Kay C. M. and Ikura M. (1996) 1H, 15N and 13C resonance assignments and monomeric structure of the amino-terminal extracellular domain of epithelial cadherin. J. Biomol. NMR 7: 173–189

    Article  CAS  PubMed  Google Scholar 

  61. Shapiro L., Fannon A. M., Kwong P. D., Thompson A., Lehmann M. S., Grubel G. et al. (1995) Structural basis of cellcell adhesion by cadherins. Nature 374: 327–337

    Article  CAS  PubMed  Google Scholar 

  62. Shapiro L., Kwong P. D., Fannon A. M., Colman D. R. and Hendrickson W. A. (1995) Considerations on the folding topology and evolutionary origin of cadherin domains. Proc. Natl. Acad. Sci. USA 92: 6793–6797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Boggon T. J., Murray J., Chappuis-Flament S., Wong E., Gumbiner B. M. and Shapiro L. (2002) C-cadherin ectodomain structure and implications for cell adhesion mechanisms. Science 296: 1308–1313

    Article  CAS  PubMed  Google Scholar 

  64. Haussinger D., Ahrens T., Sass H. J., Pertz O., Engel J. and Grzesiek S. (2002) Calcium-dependent homoassociation of Ecadherin by NMR spectroscopy: changes in mobility, conformation and mapping of contact regions. J. Mol. Biol. 324: 823–839

    Article  CAS  PubMed  Google Scholar 

  65. He W., Cowin P. and Stokes D. L. (2003) Untangling desmosomal knots with electron tomography. Science 302: 109–113

    Article  CAS  PubMed  Google Scholar 

  66. Hyafil F., Babinet C. and Jacob F. (1981) Cell-cell interactions in early embryogenesis: a molecular approach to the role of calcium. Cell 26: 447–454

    Article  CAS  PubMed  Google Scholar 

  67. Ozawa M., Engel J. and Kemler R. (1990) Single amino acid substitutions in one Ca2+ binding site of uvomorulin abolish the adhesive function. Cell 63: 1033–1038

    Article  CAS  PubMed  Google Scholar 

  68. Tong K. I., Yau P., Overduin M., Bagby S., Porumb T., Takeichi M. et al. (1994) Purification and spectroscopic characterization of a recombinant amino-terminal polypeptide fragment of mouse epithelial cadherin. FEBS Lett. 352: 318–322

    Article  CAS  PubMed  Google Scholar 

  69. Koch A. W., Pokutta S., Lustig A. and Engel J. (1997) Calcium binding and homoassociation of E-cadherin domains. Biochemistry 36: 7697–7705

    Article  CAS  PubMed  Google Scholar 

  70. Katz B. Z., Levenberg S., Yamada K. M. and Geiger B. (1998) Modulation of cell-cell adherens junctions by surface clustering of the N-cadherin cytoplasmic tail. Exp. Cell Res. 243: 415–424

    Article  CAS  PubMed  Google Scholar 

  71. Ozawa M. and Kemler R. (1998) The membrane-proximal region of the E-cadherin cytoplasmic domain prevents dimerization and negatively regulates adhesion activity. J. Cell Biol. 142: 1605–1613

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Tanaka H., Shan W., Phillips G. R., Arndt K., Bozdagi O., Shapiro L. et al. (2000) Molecular modification of N-cadherin in response to synaptic activity. Neuron 25: 93–107

    Article  CAS  PubMed  Google Scholar 

  73. Laur O. Y., Klingelhofer J., Troyanovsky R. B. and Troyanovsky S. M. (2002) Both the dimerization and immunochemical properties of E-cadherin EC 1 domain depend on Trp(156) residue. Arch. Biochem. Biophys. 400: 141–147

    Article  CAS  PubMed  Google Scholar 

  74. Yap A. S., Niessen C. M. and Gumbiner B. M. (1998) The juxtamembrane region of the cadherin cytoplasmic tail supports lateral clustering, adhesive strengthening and interaction with pl20ctn. J. Cell Biol. 141: 779–789

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Huber O., Kemler R. and Langosch D. (1999) Mutations affecting transmembrane segment interactions impair adhesiveness of E-cadherin. J. Cell Sci. 112 ( Pt 23): 4415–4423

    CAS  PubMed  Google Scholar 

  76. Lambert M., Padilla F. and Mege R. M. (2000) Immobilized dimers of N-cadherin-Fc chimera mimic cadherin-mediated cell contact formation: contribution of both outside-in and inside-out signals. J. Cell Sci. 113 (Pt 12): 2207–2219

    CAS  PubMed  Google Scholar 

  77. Alattia J. R., Ames J. B., Porumb T., Tong K. I., Heng Y. M., Ottensmeyer P et al. (1997) Lateral self-assembly of E-cadherin directed by cooperative calcium binding. FEBS Lett. 417: 405–408

    Article  CAS  PubMed  Google Scholar 

  78. Baumgartner W., Hinterdorfer P., Ness W., Raab A., Vestweber D., Schindler H. et al. (2000) Cadherin interaction probed by atomic force microscopy. Proc. Natl. Acad. Sci. USA 97: 4005–4010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Wahl J. K. 3rd, Kim Y. J., Cullen J. M., Johnson K. R. and Wheelock M. J. (2003) N-cadherin-catenin complexes form prior to cleavage of the proregion and transport to the plasma membrane. J. Biol. Chem. 278: 17269–17276

    Article  CAS  PubMed  Google Scholar 

  80. Niessen C. M. and Gumbiner B. M. (2002) Cadherin-mediated cell sorting not determined by binding or adhesion specificity. J. Cell Biol. 156: 389–399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Karecla P. I., Green S. J., Bowden S. J., Coadwell J. and Kilshaw P. J. (1996) Identification of a binding site for integrin alphaEbeta7 in the N-terminal domain of E-cadherin. J. Biol. Chem. 271: 30909–30915

    Article  CAS  PubMed  Google Scholar 

  82. Whittard J. D., Craig S. E., Mould A. P., Koch A., Pertz O., Engel J. et al. (2002) E-cadherin is a ligand for integrin alpha2betal. Matrix Biol. 21: 525

    Article  CAS  PubMed  Google Scholar 

  83. Ozawa M. and Kemler R. (1990) Correct proteolytic cleavage is required for the cell adhesive function of uvomorulin. J. Cell Biol. 111: 1645–1650

    Article  CAS  PubMed  Google Scholar 

  84. Leckband D. and Sivasankar S. (2000) Mechanism of homophilic cadherin adhesion. Curr. Opin. Cell Biol. 12: 587–592

    Article  CAS  PubMed  Google Scholar 

  85. Nagafuchi A. (2001) Molecular architecture of adherens junctions. Curr. Opin. Cell Biol. 13: 600–603

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. W. Koch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koch, A.W., Manzur, K.L. & Shan, W. Structure-based models of cadherin-mediated cell adhesion: the evolution continues. Cell. Mol. Life Sci. 61, 1884–1895 (2004). https://doi.org/10.1007/s00018-004-4006-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-004-4006-2

Key words

Navigation