Skip to main content
Log in

Heike Kamerlingh Onnes and the Nobel Prize in Physics for 1913: The Highest Honor for the Lowest Temperatures

  • Published:
Physics in Perspective Aims and scope Submit manuscript

I dedicate my paper to my mother, whose unconditional love, tireless devotion, and priceless and dear companionship were and forever will be the greatest blessings in my life.

Abstract

One century ago this year the Dutch experimental physicist Heike Kamerlingh Onnes (1853–1926) was awarded the Nobel Prize in Physics for his work in low-temperature physics, in particular for his production of liquid helium. I trace the route to his Nobel Prize within the context of his and his colleagues’ research in his laboratory at the University of Leiden, and in light of his nominators and the nominations he received in the five years 1909–1913.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. After Kamerlingh Onnes’s death, his wife donated his papers to the University of Leiden, a large part of which are deposited in the Museum Boerhaave. His correspondence includes nine exchanges with Cailletet, one with Pictet, thirty-two with Dewar, four with Olszewski, and some with Emile Hilaire Amagat (1841–1915), who worked on measuring the compressibility of several gases and determining their isotherms over a wide range of pressures and temperatures.

  2. In 1890 van der Waals, by relating his eponymous equation of state to the second law of thermodynamics in the form given by J. Willard Gibbs (1839–1903), found a graphical representation of the result in the form of a surface, which he called the Ψ surface.

  3. Between July 1910 and March 1925 Mathias published, jointly with Kamerlingh Onnes and Claude A. Crommelin (1878–1965), seven articles on the possible application of his law of rectilinear diameter to various gases; see “Published Works” (ref. 26), pp. 531-534.

  4. Paragraph 4 of the Statutes states that “should … the death of the individual in question have occurred subsequent to a recommendation having been made in due course for his work to receive a prize, such prize may be awarded”; see Crawford, Beginnings (ref. 27), p. 223. The Physics Committee had withdrawn its recommendation of Ångström fearing that the Academy would reject it.

References

  1. Per F. Dahl, “Kamerlingh Onnes and the discovery of superconductivity. The Leiden years, 1911–1914,” Historical Studies in the Physical Sciences 15 (1) (1984), 1-37; idem, Superconductivity: Its Historical Roots and Development from Mercury to the Ceramic Oxides (New York: American Institute of Physics, 1992), Chapters 3 and 4, pp. 50-79; Jacobus de Nobel and Peter Lindenfeld, “The Discovery of Superconductivity,” Physics Today 49 (September 1996), 40-42; Simón Reif-Acherman, “Heike Kamerlingh Onnes: Master of Experimental Technique and Quantitative Research,” Physics in Perspective 6 (2004), 197-223; on 212-216; Dirk van Delft, “Little cup of helium, big science,” Physics Today 61 (March 2008), 36-42; Dirk van Delft and Peter Kes, “The discovery of superconductivity,” Phys. Today 63 (September 2010), 38-43; Simón Reif-Acherman, “Liquefaction of gases and discovery of superconductivity: two very closely scientific achievements in low temperature physics,” Revista Brasileira de Ensino de Fisica 33, No. 2 (2011), 1-17; Dirk van Delft, “History and significance of the discovery of superconductivity by Kamerlingh Onnes in 1911,” Physica C 479 (2012), 30-35.

  2. J. van den Handel, “Kamerlingh Onnes, Heike,” in Charles Coulston Gillispie, Editor In Chief, Dictionary of Scientific Biography. Vol. VII (New York: Charles Scribner’s Sons, 1973), pp. 220-222; Dirk van Delft, Freezing physics: Heike Kamerlingh Onnes and the quest for cold (Amsterdam: Koninklijke Nederlandse Akademie van Wetenschappen, 2007), passim; Reif-Acherman, “Heike Kamerlingh Onnes” (ref. 1), pp. 197-223; Ernst Cohen, “Kamerlingh Onnes Memorial Lecture,” Journal of the Chemical Society 1 (1927), 1193-1209; reprinted in Memorial Lectures delivered before The Chemical Society 1914–1932 [Vol. III] (London: The Chemical Society, 1933), pp. 91-107.

  3. K. Gavroglu and Y. Goudaroulis, “The Remarkable Work of ‘Le Gentleman du Zero Absolu’,” in Kostas Gavroglu and Yorgos Goudaroulis, ed., Through Measurement to Knowledge: The Selected Papers of Heike Kamerlingh Onnes 18531926 (Dordrecht. Boston, London: Kluwer Academic Publishers, 1991), pp. xiii-xcvi, on p. xvii.

  4. Quoted in Arno Laesecke, “Through Measurement to Knowledge: The Inaugural Lecture of Heike Kamerlingh Onnes (1882),” Journal of Research of the National Institute of Standards and Technology 107 (May-June 2002), 261-277, on 264.

  5. H. Kamerlingh Onnes, “on the cryogenic laboratory at Leiden and on the production of very low temperatures,” Communications from the Physical Laboratory of the University of Leiden No. 14 (1894), 3-30, on 4; reprinted in Gravroglu and Goudaroulis, Through Measurement to Knowledge (ref. 3), pp. 3-30, on p. 4.

  6. A.Ya. Kipnis, B.E. Yavelov, and J.S. Rowlinson, Van der Waals and Molecular Science (Oxford: Clarendon Press, 1996), pp. 34-49, 102-106, 233-241.

  7. H. Kamerlingh Onnes, “The importance of accurate measurements at very low temperatures,” Comm. Phys. Lab. Leiden, Supplement No. 9 (1904), 3-30, on 3-13; reprinted in Gavroglu and Goudaroulis, Through Measurement to Knowledge (ref. 3), pp. 31-58, on pp. 31-41.

  8. T.H. Levere, “Martinus van Marum and the Introduction of Lavoisier’s Chemistry into the Netherlands,” in R.J. Forbes, ed., Martinus van Marum: Life and Work. Vol I. (Haarlem: H.D. Tjeenk Willink & Zoon, 1969), pp. 158-286, on p. 265.

  9. Duane H.D. Roller, “Thilorier and the First Solidification of a ‘Permanent Gas (1835)’,” Isis 43 (1952), 109-113; J. Pelseneer, “Thilorier, Charles,” Isis 44 (1953), 96-97.

  10. L. Pearce Williams, Michael Faraday: A Biography (London: Chapman and Hall, 1965), pp. 127-l29.

  11. Yorgos Goudaroulis, “Searching for a name: the development of the concept of the critical point (1822-1869),” Revue d’Histoire des Sciences 47 (1994), 363-379.

    Article  Google Scholar 

  12. Willet L. Hardin, The Rise and Development of the Liquefaction of Gases (London: Macmillan, 1899), pp. 113-137, 120-137; T. O’Conor Sloane, Liquid Air and the Liquefaction of Gases: Theory, History, Biography, Practical Applications, Manufacture (New York: Norman W. Henley & Co., 1899), pp. 152-202, 152-171; Jaime Wisniak, “Louis Paul Cailletet – The liquefaction of the permanent gases,” Indian Journal of Chemical Technology 10 (2003), 223-236; idem, “Raoul Pierre Pictet – The liquefaction of oxygen and achievement of low temperatures,” ibid., 326-336; N. Kurti, “From Cailletet and Pictet to microkelvin,” Cryogenics 18 (1978), 451-458.

  13. Hardin, Rise and Development (ref. 12), pp. 137-167; Sloane Liquid Air (ref. 12), pp. 203-229; Tadeusz Estreicher, “Zygmunt Wróblewski 1845-88 and Karol Olszewski 1846-1915: ‘The Siamese Twins of Polish Science’,” in Stephen P. Mizwa, ed., Great Men and Women of Poland (New York: Macmillan, 1942), pp. 263-277; J. Rafalowicz, “History of Cryogenics in Poland,” in Ralph G. Scurlock, ed., History and Origins of Cryogenics (Oxford: Clarendon Press, 1992), pp. 101-111.

  14. Hardin, Rise and Development (ref. 12), pp. 167-178; Sloane, Liquid Air (ref. 12), pp. 230-285; Jaime Wisniak, “James Dewar – More than a flask,” Ind. J. Chem. Tech. 10 (2003), 424-434.

  15. P.J.M. Velthuys-Bechthold, Inventory of the Papers of Heike Kamerlingh Onnes (1853-1926) Physicist (Haarlem: Museum Boerhaave, 2002).

    Google Scholar 

  16. W.H. Keesom, “Prof. Dr. H. Kamerlingh Onnes. His life-work, the founding of the Cryogenic Laboratory,” Comm. Phys. Lab. Leiden, Supplement No. 57 (1926), 3-21 (plus 1 plate), on 11-12.

  17. Ibid., pp. 5-19.

  18. Raoul Pictet, Mémoire sur la Liquéfaction de l’Oxygène: La Liquéfaction et la Solidification de l’Hydrogène et sur les Théories des Changements des Corps (Genève: J. Sandoz, 1878), pp. 23-66.

  19. R. de Bruyn Ouboter, “The cryogenic achievements of H. Kamerlingh Onnes,” in Gavroglu and Goudaroulis, Through Measurement to Knowledge (ref. 3), pp. xcvii-cxv, especially pp. c-ci.

  20. Anne C. van Helden, The coldest spot on earth: Kamerlingh Onnes and low temperature research, 18821923 (Leiden: Museum Boerhaave, 1989), p. 22.

    Google Scholar 

  21. Keesom, “Prof. Dr. H. Kamerlingh Onnes” (ref. 16), p. 15.

  22. Ibid., p. 16.

  23. Reif-Acherman, “Heike Kamerlingh Onnes” (ref. 1), p. 211.

  24. Bruyn Ouboter, “cryogenic achievements” (ref. 19), p. c.

  25. H. Kamerlingh Onnes, “The liquefaction of helium,” Comm. Phys. Lab. Leiden, No. 108 (1908), 3-23 (plus 3 plates); reprinted in Gavroglu and Goudaroulis, Through Measurement to Knowledge (ref. 3), pp. 164-174.

  26. “Published Works of H. Kamerlingh Onnes,” in Gavroglu and Goudaroulis, Through Measurement to Knowledge (ref. 3), pp. 521-539, especially pp. 521-526.

  27. Elisabeth Crawford, The Beginnings of the Nobel Institution: The Sciences Prizes, 1901–1915 (Cambridge: Cambridge University Press and Paris: Editions de la Maison des Sciences de l’Homme, 1984), p. 151.

  28. Ibid., p. 95.

  29. Robert Marc Friedman, “Nobel Physics Prize in perspective,” Nature 292 (1981), 793-798, on 793; idem, The Politics of Excellence: Behind the Nobel Prize in Science (New York: Times Books, Henry Holt and Company, 2001, Chapter One, pp. 13-25.

  30. Paul Forman, John L. Heilbron, and Spencer Weart, “Physics circa 1900: Personnel, Funding, and Productivity of the Academic Establishments,” Hist. Stud. Phys. Sci. 5 (1975), 1-185, on 30-35.

  31. Elisabeth Crawford, J.L. Heilbron, and Rebecca Ullrich, The Nobel Population 1901–1937: A Census of the Nominators and Nominees for the Prizes in Physics and Chemistry (Berkeley: Office for History of Science and Technology and Uppsala: Office for History of Science, 1987), p. 21.

  32. Heike Kamerlingh Onnes, “Investigations into the properties of substances at low temperatures, which have led, amongst other things, to the preparation of liquid helium [Nobel Lecture, December 11, 1913],” in The Nobel Foundation, Nobel Lectures including Presentation Speeches and Laureates’ Biographies. Vol. 1. Physics 19011921 (Amsterdam, London, New York: Elsevier, 1967), pp. 306-336, on p. 306; Kamerlingh Onnes, “on the cryogenic laboratory” (ref. 5), p. 4; Helden, coldest spot (ref. 20), p. 11; Kipnis, Yavelov, and Rowlinson, Van der Waals (ref. 6), p. 156.

  33. Crawford, Heilbron and Ullrich, Nobel Population (ref. 31), pp. 40-43.

  34. Charles Maurain, “Notice nécrologique sur Émile Mathias,” Comptes rendus hebdomodaires des Séances de l’Académie des Sciences 214 (1942), 585-587.

    Google Scholar 

  35. Simón Reif-Acherman, “The History of the Rectilinear Diameter Law,” Quimica Nova 33, No.9 (2010), 2003-2010.

    Article  Google Scholar 

  36. Émile Mathias, “Le laboratoire cryogène de Leyde,” Revue générale des Sciences pures et appliquées 7 (1896), 381-390.

    Google Scholar 

  37. Förslag till utdelningav Nobelpriset i fysik (Letters of nomination concerning the awarding of the Nobel prizes in physics), 1909, Center for the History of Science, Royal Swedish Academy of Sciences, Stockholm.

  38. E.O. Schulz-DuBois, “Foucault Pendulum Experiment by Kamerlingh Onnes and Degenerate Perturbation Theory,” American Journal of Physics 38 (1970), 173-188.

    Article  MathSciNet  ADS  Google Scholar 

  39. For information on Kamerlingh Onnes’s twenty-three papers on methods and techniques, on his eight papers on van der Waals’s Ψ surface, and on his thirty-eight papers on the isotherms of diatomic gases and binary mixtures, see “Published Works” (ref. 26), pp. 521-536.

  40. É. Mathias, “H. Kamerlingh Onnes: l’Œuvre et l’homme,” Rev. gén. Sci. pures appl. 37 (1926), 294-298, on 296.

  41. François Le Chatelier, Henry Le Chatelier: Un grand savant d’hier, Un précurseur: Sa vie, Son œuvre Son temps (Paris: S. Le Chatelier–Revue de Métallurgie, 1968), pp. 47-114.

  42. Cinquantenaire Scientifique de M. Henry Le Chatelier (Paris: F. Dutal, 1922), p. 47.

  43. H. Le Chatelier et O. Boudouard, Mesure des Températures Élevées (Paris: Georges Carré et C. Naud, 1900).

  44. Helden, “coldest spot” (ref. 20), p. 7.

  45. Russell McCormmach, “Lorentz, Hendrik Antoon,” in Gillispie, DSB (ref. 2). Vol. VIII (1973), pp. 487-500, on p. 488.

  46. Cohen, “Kamerlingh Onnes Memorial Lecture” (ref. 2), p. 1208; 106.

  47. Quoted in H.A. Lorentz, “Het Proefschrift van Prof. Kamerlingh Onnes [1926],” in Collected Papers. Vol. IX (The Hague: Martinus Nijhoff, 1939), pp. 291-307, on p. 292; translated in Kipnis, Yvelov, and Rowlinson, Van der Waals (ref. 6), p. 152.

  48. James Brookes Spencer, “Zeeman, Pieter,” in Gillispie, DSB (ref. 2).Vol. XIV (1976), pp. 597-599, on p. 597.

  49. Quoted in Helden, coldest spot (ref. 20), p. 9.

  50. M.G.J. Minnaert, “Julius, Willem Henri,” in Gillispie, DSB (ref. 2). Vol. VII (1973), pp. 186-187.

  51. Delft, Freezing physics (ref. 2), pp. 375-379.

  52. Woldemar Voigt, “[Kamerlingh Onnes’s] Nobelpreis 1913,” Chemiker Zeitung (December 11, 1913), 1518-1520.

  53. [Woldemar] Voigt, “Prof. Dr. Friedrich Pockels,” Beiblätter zu den Annalen der Physik 37, No. 19 (1913), i-iv.

  54. Shaul Katzir, The Beginnings of Piezoelectricity: A Study in Mundane Physics (Dordrecht: Springer, 2006), pp. 200-205; idem, “From explanation to description: Molecular and phenomenological theories of piezoelectricity,” Hist. Stud. Phys. Biol. Sci. 34 (1), (2003), 69-94, on 88.

  55. F. Pockels, Lehrbuch der Kristalloptik (Leipzig and Berlin: B. G. Teubner, 1906), pp. 449-510.

  56. Nobel Foundation, Nobel Lectures. Physics 19011921 (ref. 32), p. 191.

  57. Quoted in Kipnis, Yavelov, and Rowlinson, Van der Waals (ref. 6), p. 116.

  58. Kamerlingh Onnes, “on the cryogenic laboratory” (ref. 5), p. 4; 4.

  59. Gavroglu and Goudaroulis, Through Measurement to Knowledge (ref. 3), p. xxxix.

  60. Kipnis, Yavelov, and Rowlinson, Van der Waals (ref. 6), pp. 102-106.

  61. H. Kamerlingh Onnes, “Algemeene theorie der vloeistoffen,” Proceedings Koninklijke Akademie van Wetenschappen te Amsterdam Section on Sciences 21 (1881), 8-43; idem, “Théorie générale de l’état fluide,” Archives Néerlandaises 30 (1881), 101-36; latter reprinted in Gavroglu and Goudaroulis, Through Measurement to Knowledge (ref. 3), pp. 89-124.

  62. Quoted in Gavroglu and Goudaroulis, Through Measurement to Knowledge (ref. 3), pp. xxxix-xl.

  63. H. Kamerlingh Onnes, “Expression of the equation of state of gases and liquids by means of series,” Comm. Phys. Lab. Leiden No. 71 (1901), 3-25; reprinted in Gavroglu and Goudaroulis, Through Measurement to Knowledge (ref. 3), pp. 146-163, on p. 3; 146.

  64. Crawford, Beginnings (ref. 27), p. 222.

  65. Ibid., p. 162.

  66. Kipnis, Yavelov, and Rowlinson, Van der Waals (ref. 6), pp. 106-116.

  67. Ibid., pp. 291-296.

  68. H. Kamerlingh Onnes, “Contributions to the knowledge of van der Waals’ Ψ-surface. I. Graphical treatment of the transverse-plait,” Proc. K. Akad. Weten. Ams. Sec. Sci. 3 (1900), 275-288 (with 2 plates); H. Kamerlingh Onnes and M. Reinganum, idem. “II. The part of the transverse plait in the neighborhood of the plaitpoint in Kuenen’s experiments on retrograde condensation,” ibid. 3 (1900-1901), 289-298.

  69. H. Kamerlingh Onnes, “Isotherms of monatomic gases and their binary mixtures. III. Data concerning neon and helium,” Proc. K. Akad. Weten. Ams. Sec. Sci. 12 (1910), 175-178.

  70. Louis de Broglie, “Notice sur la vie et l’œuvre de Jean Becquerel,” Institut de France, Académie des Sciences, Notices et Discours. Tome cinquième. 1963-1972 (Paris: Gauthier-Villars, 1972), 1-20.

  71. David M. Knight, “Becquerel, Antoine-Cesar,” in Gillispie, DSB (ref. 2). Vol. I (1970), pp. 557-558.

  72. W.C., “Edmond Becquerel” [Obituary Notices of Fellows Deceased], Proceedings of the Royal Society of London 51 (1892), xxi-xxiv; Bernard Valeur and Mário N. Berberan-Santos, “A Brief History of Fluorescence and Phosphorescence before the Emergence of Quantum Theory,” Journal of Chemical Education 88 (2011), 731-738.

  73. W.C., “Antoine Henri Becquerel. 1852-1908” [Obituary Notices of Fellows Deceased], Proc. Roy. Soc. Lon. A 83 (1910), xx-xxiii; Alfred Romer, “Becquerel, [Antoine-]Henri, in Gillispie, DSB (ref. 2). Vol. I (1970), pp. 558-561.

  74. Jean Becquerel, “Sur quelques phénoménes optiques et magnéto-optiques dans les cristaux aux basses températures,” Comptes rendus 148 (1909), 158-161.

    Google Scholar 

  75. Gavroglu and Goudaroulis, Through Measurement to Knowledge (ref. 3), pp. lxxx-lxxxi.

  76. See, for example, Jean Becquerel et H. Kamerlingh Onnes, “Sur les spectres d’absorption des cristaux des terres rares et leurs modifications dans un champ magnétique aux températures de liquefaction et de solidification de l’hydrogène,” Comptes rendus 146 (1908), 625-628, and Henri Becquerel, Jean Becquerel, and Heike Kamelringh Onnes, “Phosphorescence des sels d’uranyle aux très basses tempèratures,” Annales de Chimie et de Physique 20 (1910), 145-166.

  77. Crawford, Heilbron, and Ullrich, Nobel Population (ref. 31), pp. 46-49.

  78. Förslag (ref. 37), 1910.

  79. Nobel Foundation, Nobel Lectures. Physics 19011921 (ref. 32), p. 249.

  80. Förslag (ref. 37), 1910.

  81. Olov Amelin (Nobel Museum Director), personal communication (November 19, 2011).

  82. Kommittéutlåtande, Nobelkommittén för kemi (Committee report, Nobel Committee for Chemistry), 1910, Center for the History of Science, Royal Swedish Academy of Sciences, Stockholm.

  83. [Viscount] Cherwell and F. Simon, “Walther Nernst 1864–1941,” Obituary Notices of Fellows of the Royal Society 4, No. 11 (1942), 101-112.

  84. Kommittéutlåtande (ref. 82), 1910.

  85. Nobel Foundation, Nobel Lectures. Physics 19011921 (ref. 32), p. 269.

  86. Madame P. Curie and H. Kamerlingh Onnes, “The radiation of radium at the temperature of liquid hydrogen,” Proc. K. Akad. Weten. Ams. Sec. Sci. 15 (Part 2) (1913), 1430-1441.

  87. See, for example, H. Kamerlingh Onnes and Albert Perrier, “Researches on the magnetization of liquid and solid oxygen,” Proc. K. Akad. Weten. Ams. Sec. Sci. 12 (1910), 799-835 (with 1 plate).

  88. H. Kamerlingh Onnes, “Further Experiments with Liquid Helium. E. A helium-cryostat. Remarks on the preceding communications,” Proc. K. Akad. Weten. Ams. Sec. Sci. 14 (Part 1) (1911), 204-210.

  89. See, for example, H. Kamerlingh Onnes and C.A. Crommelin, “Isotherms of monoatomic gases and of their binary mixtures. VII. Isotherms of argon between +20° C and −150° C.,” Proc. K. Akad. Weten. Ams. Sec. Sci. 13 (1911), 614-625 (with 2 plates).

  90. Simón Reif-Acherman, “Studies on the temperature dependence of electric conductivity for metals in the Nineteenth Century: a neglected chapter in the history of superconductivity,” Rev. Brasil. Ens. Fisica 33, No. 4 (2011), 4602-1-4602-15.

  91. See, for example, H. Kamerlingh Onnes, “Further Experiments with Liquid Helium. D. On the Change of the Electrical Resistance of Pure Metals at very low temperatures, etc. V. The Disappearance of the resistance of mercury,” Proc. K. Akad. Weten. Ams. Sec. Sci. 14 (Part 1) (1911), 113-115. For secondary literature, see (ref. 1).

  92. M. Kamerlingh Onnes, “Sur les Résistances Électriques,” in P. Langevin et M. de Broglie, ed., La Théorie du Rayonnement et les Quanta. Rapports et Discussions de la Réunion tenue á Bruxelles, du 30 octobre au 3 novembre 1911. Sous les Auspices de M. E. Solvay (Paris, Gauthier-Villars, 1912), pp. 304-310.

  93. Crawford, Heilbron, and Ullrich, Nobel Population (ref. 31), p. 52.

  94. [Louis de] Broglie, “Charles Fabry 1867–1945,” Obit. Not. Fell. Roy. Soc. 5 (1947), 445-450.

  95. H. Kamerlingh Onnes, “Further experiments with liquid helium, etc.,” Proc. K. Akad. Weten. Ams. Sci. Sec. 16 (Part 2) (1914), 673-688, on 685; reprinted in Gavroglu and Goudaroulis, Through Measurement to Knowledge (ref. 3), pp. 315-332, on 328.

  96. Terry Shinn, “The Bellevue grand electroaimant, 1900–1940: Birth of a research-technology community,” Hist. Stud. Phys. Biol. Sci. 24 (1) (1993), 157-187, especially 161-163.

  97. Ch. Fabry, “Production de champs magnétiques intenses au moyen de bobines sans fer,” J. Phys. Th. et App. 9 (1910), 129-134.

    Google Scholar 

  98. J.E. Verschaffelt, “Notice sur Edmond van Aubel,” Annuaire de l’Académie Royale de Belgique 114 (1948), Notices Biographiques, 3-48.

  99. Edmond van Aubel, “Sur les résistances électriques des métaux purs,” Journal de Physique Théorique et Appliquée 10 (1901), 389-391.

    Article  Google Scholar 

  100. See, for example, Edmond van Aubel, “Sur le phénomène de Hall et l’effet thermomagnétique transversal dans le graphite,” Comptes rendus 153 (1911), 331-333.

  101. Edmond van Aubel, “Sur la résistance électrique du sulfure de plomb aux très basses températures,” Comptes rendus 135 (1902), 734-736.

    Google Scholar 

  102. Diana Kormos Barkan, Walther Nernst and the Transition to Modern Physical Science (Cambridge: Cambridge University Press, 1999), pp. 132-163.

  103. Hans Ramser, “Warburg, Emil Gabriel,” in Gillispie, DSB (ref. 2). Vol. XIV (1976), pp. 170-172.

  104. David Cahan, An Institute for an Empire: The Physikalisch-Technische Reichsanstalt 1871-1918 (Cambridge: Cambridge University Press, 1989), pp. 181-182.

    Google Scholar 

  105. Delft, Freezing physics (ref. 2), pp. 321, 590-591.

  106. Förslag (ref. 37), 1912.

  107. Crawford, Heilbron and Ullrich, Nobel Population (ref. 31), pp. 52-53.

  108. Quoted in Bruno Carazza and Helge Kragh, “Augusto Righi’s magnetic rays: A failed research program in early 20th-century physics,” Hist. Stud. Phys. Biol. Sci. 21 (1) (1990), 1-28, on 21-22.

  109. Kommittéutlåtande (ref. 82), 1912.

  110. Maria Asp Dahlbäk, Archivist, Center for History of Science, The Royal Swedish Academy of Sciences, personal communication (November 23, 2012).

  111. Friedman, Politics of Excellence (ref. 29), p. 57.

  112. Nobel Foundation, Nobel Lectures. Physics 19011921 (ref. 32), p. 291.

  113. See, for example, W.J. de Haas, “Isotherms of diatomic gases and of their binary mixtures. X. Control measurements with volumenometer of the compressibility of hydrogen at 20° C.,” Proc. K. Akad. Weten. Ams. Sec. Sci. 15 (Part 1) (1912), 295-299; W.H. Keesom, “On the Deduction of the Equation of State from Boltzmann’s Entropy Principle,” ibid., 240-256.

  114. Olof Beckman, personal communication (March 15, 2004).

  115. See, for example, H. Kamerlingh Onnes and Bengt Beckman, “On the Hall effect and the change in the resistance in a magnetic field at low temperatures, etc.,” Proc. K. Akad. Weten. Ams. Sec. Sci. 15 (Part 1) (1912), 307-318; H. Kamerlingh Onnes and Mrs. Anna Beckman,”On piezo-electric and pyro-electric properties of quartz at low temperatures down to that of liquid hydrogen,” ibid. 15 (Part 2) (1913), 1380-1383.

  116. Gavroglu and Goudarulis, “Remarkable Work,” (ref. 3), pp. lxxviii-lxxix.

  117. Förslag (ref. 37), 1913.

  118. Francis Perrin, “Weiss, Pierre,” in Gillispie, DSB (ref. 2). Vol. XIV (1976), pp. 243-247.

  119. Pierre Weiss, Förslag (ref. 37), 1913.

  120. Pierre Weiss, “L’hypothèse du champ moléculaire et la propriété ferromagnétique,” J. Phys. Th. et App. 6 (1907), 661-690; see also Pierre Quédec, “Weiss’ magneton: the sin of pride or a venial mistake,” Hist. Stud. Phys. Biol. Sci. 18 (2) (1988), 349-375.

    Article  Google Scholar 

  121. Pierre Weiss and H. Kamerlingh Onnes, “Researches on magnetization at very low temperatures,” Proc. K. Akad. Weten. Ams. Sec. Sci. 12 (1910), 649-677 (with 2 plates); idem, “L’intensité d’aimantation á saturation aux tres basses températures,” Comptes rendus 150 (1910), 686-687.

    Google Scholar 

  122. Cahan, Institute for an Empire (ref. 104), pp. 76, 138-139.

  123. Mikael Hård, Machines are Frozen Spirit: The Scientification of Refrigeration and Brewing in the 19 th CenturyA Weberian Interpretation (Frankfurt am Main: Campus Verlag and Boulder: Westview Press, 1994), pp. 143-170.

  124. Bronislaw Średniawa, History of Theoretical Physics at Jagellonian University in Cracow in XIXth Century and in the First Half of XXth Century (Warszawa-Krakow: Państwowe Wydawnictwo Naukowe, 1985), pp. 75-79.

    Google Scholar 

  125. See, for example, A.W. Witkowski, “Sur la dilatation et la compressibilité de l’air atmosphérique,” Bulletin International de l’Académie des Sciences de Cracovie No. 5 (1891), 181-188; ídem, “Sur la dilatation de l’hydrogène,” ibid., No. 6 (1905), 305-338; K. Olszewski and A. Witowski, “Propriètes optiques de l’oxygène liquid,” ibid., No. 8 (1892), 340-343.

  126. Bronislaw Średniawa, “Wladyslaw Natanson (1864-1937),” The old and new Concepts of Physics 4 (2007), 705-723.

    Google Scholar 

  127. Wladislaw Natanson, “Sur la temperature critique de l’hydrogene,” J. Phys. Th. et App. 4, No. 1 (1895), 219-226; ídem, “Sur la dètente adiabatique au voisinage du point critique,” ibid.., 305-311; ídem, “On the critical temperature of hydrogen and the theory of adiabatic expansion in the neighbourhood of the critical point,” Philosophical Magazine 40 (1895), 272-282.

    Google Scholar 

  128. Średniawa, History of Theoretical Physics at Jagellonian University (ref. 124), pp. 68-69.

  129. H. Kamerlingh Onnes and C. Zakrzewski, “Contributions to the knowledge of van der Waals Ψ-surface. IX. The conditions of coexistence of binary mixtures of normal substances according to the law of corresponding states,” Proc. K. Akad. Weten. Ams. Sec. Sci. 7 (1905), 222-233 (with 2 plates); ídem, “The determination of the conditions of coexistence of vapour and liquid phases of mixtures of gases at low temperatures,” ibid., 233-241 (with 1 plate); ídem, “The validity of the law of corresponding states for mixtures of methyl chloride and carbon dioxide,” ibid., 377-383.

    Google Scholar 

  130. Armin Hermann, “Lenard, Philipp,” in Gillispie, DSB (ref. 2). Vol. VIII (1980), pp. 180-183.

  131. See, for example, P. Lenard and V. Klatt, “Über die Erdakaliphosphore,” Annalen der Physik 15 (1904), 225-282, 425-484, 633-672.

  132. P. Lenard, H. Kamerlingh Onnes, and W.E. Pauli, “The behavior of the phosphorescent sulphides of the alkaline earths at various temperatures, and particularly at very low temperatures,” Proc. K. Akad. Weten. Ams. Sec. Sci. 12 (1910), 157-174 (with 1 plate).

  133. Förslag (ref. 37), 1914.

  134. Eri Yagi, “Nagaoka, Hantaro,” in Gillispie, DSB (ref. 2). Vol. IX (1974), pp. 606-607; Kenkichiro Koizumi, “The emergence of Japan’s first physicists: 1868-1900,” Hist. Stud. Phys. Sci. 6 (1975), 3-108, especially 82-95; Eri Yagi, “On Nagaoka’s Saturnian Atomic Model,” Japanese Studies in the History of Science 3 (1964), 29-47.

  135. Helge Kragh, Quantum Generations: A History of Physics in the Twentieth Century (Princeton: Princeton University Press, 1999), pp. 23-24.

    MATH  Google Scholar 

  136. K. Oshima and Y. Aiyama, “The Development of Cryogenics in Japan,” in Scurlock, History and Origins (ref. 13), 520-546, especially pp. 520-521.

  137. Kommittéutlåtande (ref. 82), 1913.

  138. Nobel Foundation, Nobel Lectures (ref. 32), p. 301.

  139. Website <http://www.nobelprize.org/nobel_prizes/about/prize_amounts_12.pdf > (accessed September 13, 2011).

  140. Kamerlingh Onnes, “Investigations” (ref. 32), pp. 306, 316.

  141. Ibid., pp. 325, 308.

  142. Olof Beckman, personal communication (March 15, 2004)

  143. Website <www.nobelprize.org/nobel_prizes/chemistry/laureates/1949/> (accessed June 13, 2013).

Download references

Acknowledgments

I thank Karl Grandin and Maria Asp, Center for History of Science, Royal Swedish Academy of Sciences, for their collaboration in preparing my paper, and for permission to reproduce some of the figures in it. I also thank the staff of the Emilio Segrè Visual Archives, American Institute of Physics, and of the Museum Boerhaave for supplying various pictures for my paper, and for permission to reproduce them. I also am grateful to several collegues in foreign countries who have provided information on many of the scientists I mention in my paper. Finally, I thank Roger H. Stuewer for his meticulous and knowledgeable editorial work on my paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simón Reif-Acherman.

Additional information

Simón Reif-Acherman is Professor of Chemical Engineering at the Universidad del Valle in Cali, Colombia. His interests in history of science and technology include biographical studies and developments of scientific concepts and theories in physics and chemistry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reif-Acherman, S. Heike Kamerlingh Onnes and the Nobel Prize in Physics for 1913: The Highest Honor for the Lowest Temperatures. Phys. Perspect. 15, 415–450 (2013). https://doi.org/10.1007/s00016-013-0118-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00016-013-0118-0

Keywords

Navigation