Skip to main content
Log in

Non-closed isometry-invariant geodesics

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

Let c be a non-closed and bounded geodesic in a complete Riemannian manifold M. Assume that c is invariant under an isometry A of M and that c is not contained in the set of fixed points of A. We prove that, for some \({k\ge 2}\), the geodesic flow line ċ corresponding to c is dense in a k-dimensional torus N embedded in TM. In particular, every geodesic with initial vector in N is A-invariant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.L. Besse, Manifolds all of whose geodesics are closed, Springer-Verlag, Berlin-New York, 1978

  2. Grove K.: Condition (C) for the energy integral on certain path-spaces and applications to the theory of geodesics. J. Differential Geom. 8, 207–233 (1973)

    MathSciNet  MATH  Google Scholar 

  3. Grove K.: Isometry-invariant geodesics. Topology 13, 281–292 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  4. Grove K., Tanaka M.: On the number of invariant closed geodesics, Acta Math. 140, 33–48 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hingston N.: Isometry-invariant geodesics on spheres. Duke Math. J. 57, 761–768 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Mazzucchelli M.: Isometry-invariant geodesics and the fundamental group. Math. Ann. 362, 265–280 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Papadima S., Paunescu L.: Isometry-invariant geodesics and nonpositive derivations of the cohomology. J. Differential Geom. 71, 159–176 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Rademacher H.-B.: Metrics with only finitely many isometry invariant geodesics. Math. Ann. 284, 391–407 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Singer D., Gluck H.: The existence of nontriangulable cut loci. Bull. Amer. Math. Soc. 82, 599–602 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. Tanaka M.: On the existence of infinitely many isometry-invariant geodesics. J. Differential Geom. 17, 171–184 (1982)

    MathSciNet  MATH  Google Scholar 

  11. Tanaka M.: An elementary proof of the existence of uncountably many non-closed isometry invariant geodesics. Geom. Dedicata 40, 361–366 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Bangert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bangert, V. Non-closed isometry-invariant geodesics. Arch. Math. 106, 573–580 (2016). https://doi.org/10.1007/s00013-016-0904-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-016-0904-4

Mathematics Subject Classification

Keywords

Navigation