Skip to main content
Log in

Properly immersed minimal surfaces in a slab of \({\mathbb {H} \times {\mathbb {R}}}\), \({\mathbb {H}}\) the hyperbolic plane

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

We prove that the ends of a properly immersed simply or one connected minimal surface in \({{\mathbb{H}} \times {\mathbb{R}}}\) contained in a slab of height less than \({\pi}\) of \({{\mathbb{H}} \times {\mathbb{R}}}\) are multi-graphs. When such a minimal surface is properly embedded, then the ends are graphs. When such a minimal surface is properly embedded and simply connected, it is an entire graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernstein J., Brenner C.: Conformal Structure of Minimal Surfaces with Finite Topology. Comment. Math. Helv. 86, 353–381 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. T.H. Colding and W.P. Minicozzi, II The space of embedded minimal surfaces of fixed genus in a 3-manifold. I. Estimates off the axis for disks, Annals of Mathematics (2) 160 (2004), 27–68.

  3. P. Collin, Topologie et courbure des surfaces minimales proprement plongées de \({\mathbb{R}^3}\), Annals of Mathematics 145 (1997), 1–31.

  4. P. Collin, L. Hauswirth, and H. Rosenberg, The geometry of finite topology surfaces properly embedded in hyperbolic space with constant mean curvature one, Annals of Mathematics 153 (2001), 623–659.

  5. Collin P., Rosenberg H.: Construction of harmonic diffeomorphisms and minimal graphs. Annals of Mathematics 172, 1879–1906 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. B. Daniel, Isometric immersions into \({\mathbb{S}^n \times \mathbb{R}}\) and \({\mathbb{H}^n \times \mathbb{R}}\) and applications to minimal surfaces. Trans. Amer. Math. Soc. 361 (2009), 6255–6282.

  7. Daniel B.: Isometric Immersion into three-dimensional homogeneous manifolds. Comment. Math. Helv. 82, 87–131 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gulliver R.: Removability of singular points on surfaces of bounded mean curvature. J. Differential Geometry 11, 345–350 (1976)

    MATH  MathSciNet  Google Scholar 

  9. Hauswirth L.: Minimal surfaces of Riemann type in three-dimensional product manifolds. Pacific J. Math. 224, 91–117 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. D. Hoffman and W.H. Meeks, III ,The strong halfspace theorem for minimal surfaces, Invent. Math. 101 (1990), 373–377.

  11. W.H. Meeks, III and H. Rosenberg, The uniqueness of the helicoid, Annals of Mathematics 161 (2005), 727–758.

  12. B. Nelli and H. Rosenberg, Minimal surfaces in \({\mathbb{H}^2 \times \mathbb{R}}\). Bull. Braz. Math. Soc. (N.S.) 33 (2002), 263–292.

  13. B. Nelli and H. Rosenberg, Errata: “Minimal surfaces in \({\mathbb{H}^2\times \mathbb{R}}\), [Bull. Braz. Math. Soc. (N.S.) 33 (2002), 263–292; MR1940353]. Bull. Braz. Math. Soc. (N.S.) 38 (2007), 661–664. 53A10.

  14. R. Sa Earp and E. Toubiana, Screw motion surfaces in \({\mathbb{S}^2 \times \mathbb{R}}\) and \({\mathbb{H}^2 \times \mathbb{R}}\). Illinois J. Math. 49 (2005), 1323–1362.

  15. L. Mazet, M. Rodriguez, and H. Rosenberg, Periodic constant mean curvature surfaces in \({\mathbb{H} \times \mathbb{R}}\)., Asian Journal of Mathematics 18 (2014), 829–858.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Hauswirth.

Additional information

P. Collin, L. Hauswirth, and H. Rosenberg was partially supported by the ANR-11-IS01-0002 Grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collin, P., Hauswirth, L. & Rosenberg, H. Properly immersed minimal surfaces in a slab of \({\mathbb {H} \times {\mathbb {R}}}\), \({\mathbb {H}}\) the hyperbolic plane. Arch. Math. 104, 471–484 (2015). https://doi.org/10.1007/s00013-015-0744-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-015-0744-7

Mathematics Subject Classification

Keywords

Navigation