Skip to main content
Log in

Canonical formulas for k-potent commutative, integral, residuated lattices

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

Canonical formulas are a powerful tool for studying intuitionistic and modal logics. Indeed, they provide a uniform and semantic way of axiomatising all extensions of intuitionistic logic and all modal logics above K4. Although the method originally hinged on the relational semantics of those logics, recently it has been completely recast in algebraic terms. In this new perspective, canonical formulas are built from a finite subdirectly irreducible algebra by describing completely the behaviour of some operations and only partially the behaviour of some others. In this paper, we export the machinery of canonical formulas to substructural logics by introducing canonical formulas for k-potent, commutative, integral, residuated lattices (k-CIRL). We show that any subvariety of k-CIRL is axiomatised by canonical formulas. The paper ends with some applications and examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bezhanishvili G., Bezhanishvili N.: An algebraic approach to canonical formulas: intuitionistic case. Rev. Symb. Log. 2, 517–549 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bezhanishvili G., Bezhanishvili N.: An algebraic approach to canonical formulas: modal case. Studia Logica 99, 93–125 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bezhanishvili G., Bezhanishvili N.: Canonical formulas for wK4. Rev. Symb. Log. 5, 731–762 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bezhanishvili G., Bezhanishvili N.: Locally finite reducts of Heyting algebras and canonical formulas. Notre Dame J. Form. Log. 58, 21–45 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bezhanishvili G., Bezhanishvili N., Iemhoff R.: Stable canonical rules. J. Symb. Log. 81, 284–315 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bezhanishvili, N.: Lattices of intermediate and cylindric modal logics. Ph.D. thesis, University of Amsterdam (2006)

  7. Bezhanishvili N.: Frame based formulas for intermediate logics. Studia Logica 90, 139–159 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bezhanishvili N., Gabelaia D., Ghilardi S., Jibladze M.: Admissible bases via stable canonical rules. Studia Logica 104, 317–341 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bezhanishvili, N., Ghilardi, S.: Multiple-conclusion rules, hypersequents syntax and step frames. In: Gore, R., Kooi, B., Kurucz A. (eds.) Advances in Modal Logic (AiML 2014), pp. 54–61. College Publications (2014)

  10. Bezhanishvili, N., de Jongh, D.: Stable formulas in intuitionistic logic. Notre Dame J. Form. Log. (to appear)

  11. Blok, W.J., Pigozzi, D.: Algebraizable logics. Mem. Amer. Math. Soc. 77 (1989)

  12. Blok, W.J., Van Alten, C.J.: The finite embeddability property for residuated lattices, pocrims and BCK-algebras. Algebra Universalis 48, 253–271 (2002)

  13. Burris S., Sankappanavar H.P.: A Course in Universal Algebra. Springer, New York (1981)

    Book  MATH  Google Scholar 

  14. Chagrov A., Zakharyaschev M.: Modal Logic. The Clarendon Press, New York (1997)

    MATH  Google Scholar 

  15. Ciabattoni, A., Galatos, N., Terui, K.: From axioms to analytic rules in nonclassical logics. Proceedings of LICS’08 pp. 229–240 (2008)

  16. Ciabattoni A., Galatos N., Terui K.: Macneille completions of fl-algebras. Algebra Universalis 66, 405–420 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ciabattoni A., Galatos N., Terui K.: Algebraic proof theory for substructural logics: cut-elimination and completions. Ann. Pure Appl. Logic 163, 266–290 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Citkin, A.: Characteristic formulas 50 years later (an algebraic account). ArXiv:1407.5823 [math.LO]

  19. Galatos N., Jipsen P.: Residuated frames with applications to decidability. Trans. Amer. Math. Soc. 365, 1219–1249 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: an Algebraic Glimpse at Substructural Logics. Elsevier (2007)

  21. Jankov V.: The construction of a sequence of strongly independent superintuitionistic propositional calculi. Soviet Math. Dokl. 9, 806–807 (1968)

    Google Scholar 

  22. Jeřábek E.: Canonical rules. J. Symb. Log. 74, 1171–1205 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jeřábek E.: A note on the substructural hierarchy. Mathematical Logic Quarterly 62, 102–110 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kowalski T., Ono H.: Splittings in the variety of residuated lattices. Algebra Universalis 44, 283–298 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Spada.

Additional information

Presented by C. Tsinakis.

The project leading to this joint paper has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 689176. The second-named author acknowledges the support of the grants Simons Foundation 245805 and FWF project START Y544-N23. The third-named author gratefully acknowledges partial support by the Marie Curie Intra-European Fellowship for the project “ADAMS” (PIEF-GA-2011-299071) and from the Italian National Research Project (PRIN2010–11) entitled Metodi logici per il trattamento dell'informazione.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezhanishvili, N., Galatos, N. & Spada, L. Canonical formulas for k-potent commutative, integral, residuated lattices. Algebra Univers. 77, 321–343 (2017). https://doi.org/10.1007/s00012-017-0430-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00012-017-0430-7

2010 Mathematics Subject Classification

Key words and phrases

Navigation