Skip to main content
Log in

Coordinatization of lattices by regular rings without unit and Banaschewski functions

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

A Banaschewski function on a bounded lattice L is an antitone self-map of L that picks a complement for each element of L. We prove a set of results that include the following:

  • Every countable complemented modular lattice has a Banaschewski function with Boolean range, the latter being unique up to isomorphism.

  • Every (not necessarily unital) countable von Neumann regular ring R has a map \({\varepsilon}\) from R to the idempotents of R such that \({x{R} = \varepsilon(x){R}}\) and \({\varepsilon(xy) = \varepsilon(x)\varepsilon(xy)\varepsilon(x)}\) for all \({x, y \in R}\).

  • Every sectionally complemented modular lattice with a Banaschewski trace (a weakening of the notion of a Banaschewski function) embeds, as a neutral ideal and within the same quasivariety, into some complemented modular lattice. This applies, in particular, to any sectionally complemented modular lattice with a countable cofinal subset.

A sectionally complemented modular lattice L is coordinatizable, if it is isomorphic to the lattice \({\mathbb{L}(R)}\) of all principal right ideals of a von Neumann regular (not necessarily unital) ring R. We say that L has a large 4-frame, if it has a homogeneous sequence (a 0, a 1, a 2, a 3) such that the neutral ideal generated by a 0 is L. Jónsson proved in 1962 that if L has a countable cofinal sequence and a large 4-frame, then it is coordinatizable. We prove that A sectionally complemented modular lattice with a large 4-frame is coordinatizable iff it has a Banaschewski trace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banaschewski B.: Totalgeordnete Moduln. Arch. Math. 7, 430–440 (1957) (German)

    Article  MATH  MathSciNet  Google Scholar 

  2. Birkhoff, G.: Lattice Theory. Corrected reprint of the 1967 third edition. American Mathematical Society Colloquium Publications, vol. 25. American Mathematical Society, Providence (1979)

  3. Dobbertin H.: Refinement monoids, Vaught monoids, and Boolean algebras. Math. Ann. 265, 473–487 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  4. Faith C., Utumi Y.: On a new proof of Litoff’s theorem. Acta Math. Acad. Sci. Hungar. 14, 369–371 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fryer K.D., Halperin I.: Coordinates in geometry. Trans. Roy. Soc. Canada. Sect. III. (3) 48, 11–26 (1954)

    MathSciNet  Google Scholar 

  6. Fuchs L., Halperin I.: On the imbedding of a regular ring in a regular ring with identity. Fund. Math. 54, 285–290 (1964)

    MATH  MathSciNet  Google Scholar 

  7. Goodearl K.R.: Von Neumann Regular Rings, 2nd edn. Robert E. Krieger Publishing Co., Malabar (1991)

    MATH  Google Scholar 

  8. Grätzer, G.: General Lattice Theory, 2nd edn. New appendices by the author with B.A. Davey, R. Freese, B. Ganter, M. Greferath, P. Jipsen, H.A. Priestley, H. Rose, E.T. Schmidt, S.E. Schmidt, F. Wehrung, and R. Wille. Birkhäuser, Basel (1998)

  9. Herrmann C.: Generators for complemented modular lattices and the von Neumann-Jónsson Coordinatization Theorems. Algebra Universalis 63, 45–64 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jónsson B.: Representations of complemented modular lattices. Trans. Amer. Math. Soc. 60, 64–94 (1960)

    Article  Google Scholar 

  11. Jónsson B.: Representations of relatively complemented modular lattices. Trans. Amer. Math. Soc. 103, 272–303 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  12. Maeda, F.: Kontinuierliche Geometrien. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Bd. 95. Springer, Berlin (1958) (German)

  13. Micol, F.: On representability of *-regular rings and modular ortholattices. PhD thesis, TU Darmstadt (2003) http://elib.tu-darmstadt.de/diss/000303/diss.pdf

  14. Monk, J.D. (ed.): Handbook of Boolean Algebras, vol. 3. Edited with the cooperation of R. Bonnet. North-Holland, Amsterdam (1989)

  15. Pierce, R.S.: Countable Boolean algebras. In: Handbook of Boolean Algebras, vol. 3, pp. 775–876. North-Holland, Amsterdam (1989)

  16. Saarimäki M., Sorjonen P.: On Banaschewski functions in lattices. Algebra Universalis 28, 103–118 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  17. Wehrung F.: The dimension monoid of a lattice. Algebra Universalis 40, 247–411 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Wehrung F.: Von Neumann coordinatization is not first-order. J. Math. Log. 6, 1–24 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Wehrung, F.: A non-coordinatizable sectionally complemented modular lattice with a large Jónsson four-frame. Adv. in Appl. Math., to appear

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Wehrung.

Additional information

Presented by G. Czedli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wehrung, F. Coordinatization of lattices by regular rings without unit and Banaschewski functions. Algebra Univers. 64, 49–67 (2010). https://doi.org/10.1007/s00012-010-0088-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00012-010-0088-x

2000 Mathematics Subject Classification

Key words and phrases

Navigation