Skip to main content
Log in

Complemented modular lattices with involution and orthogonal geometry

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

With each orthogeometry (P, ⊥) we associate \({{\mathbb {L}}(P, \bot)}\), a complemented modular lattice with involution (CMIL), consisting of all subspaces X and X such that dim X < ℵ0, and we study its rôle in decompositions of (P, ⊥) as directed (resp., disjoint) union. We also establish a 1–1 correspondence between ∃-varieties \({\mathcal {V}}\) of CMILs with \({\mathcal {V}}\) generated by its finite dimensional members and ‘quasivarieties’ \({\mathcal {G}}\) of orthogeometries: \({\mathcal {V}}\) consists of the CMILs representable within some geometry from \({\mathcal {G}}\) and \({\mathcal {G}}\) of the (P, ⊥) with \({{\mathbb {L}}(P, \bot) \in {\mathcal {V}}}\). Here,\({\mathcal {V}}\) is recursively axiomatizable if and only if so is \({\mathcal {G}}\). It follows that the equational theory of \({\mathcal {V}}\) is decidable provided that the equational theories of the \({\{{\mathbb {L}}(P, \bot)\, |\, (P, \bot) \in \mathcal {G}, {\rm{dim}} P = n\}}\) are uniformly decidable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker K.A., Hales A.W.: From a lattice to its ideal lattice. Algebra Universalis 4, 250–258 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bruns G., Roddy M.: A finitely generated modular ortholattice. Canad. Math. Bull. 35, 29–33 (1992)

    MATH  MathSciNet  Google Scholar 

  3. Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Available online at http://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html.

  4. Crawley P., Dilworth R.P.: Algebraic Theory of Lattices. Prentice-Hall, Englewood Cliffs, New Jersey (1973)

    MATH  Google Scholar 

  5. Faure C.-A., Frölicher A.: Modern Projective Geometry. Mathematics and its Applications, 521. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  6. Giudici, L.: Dintorni del Teorema di Coordinatizatione di von Neumann. Ph.D. thesis, Univ. di Milano (1995) http://www.nohay.net/mat/tesi.1995/tesi.ps.gz

  7. Goodearl K.R., Menal P., Moncasi J.: Free and residually artinian regular rings. J. Algebra 156, 407–432 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gorbunov, V.: Algebraic Theory of Quasivarieties. Translated from the Russian. Siberian School of Algebra and Logic. Consultants Bureau, New York (1998)

  9. Gross H.: Quadratic Forms in Infinite-dimensional Vector Spaces. Progress in Mathematics 1. Birkhäuser, Boston, Mass (1979)

    Google Scholar 

  10. Herrmann C., Roddy M.S.: Proatomic modular ortholattices: Representational and equational theory. Note di matematica e fisica 12, 55–88 (1999)

    Google Scholar 

  11. Herrmann C., Semenova M.: Existence varieties of regular rings and complemented modular lattices. J. Algebra 314, 235–251 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hodges W.: A Shorter Model Theory. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  13. Kadourek J., Szendrei M.B.: On existence varieties of E-solid semigroups. Semigroup Forum 59, 470–521 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Maeda F., Maeda S.: Theory of Symmetric Lattices. Die Grundlehren der mathematischen Wissenschaften, Band 173. Springer-Verlag, New York-Berlin (1970)

    Google Scholar 

  15. Markowsky G., Petrich M.: Subprojective lattices and projective geometry. J. Algebra 48, 305–320 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  16. Micol, F.: On representability of *-regular rings and modular ortholattices. Ph.D. thesis, TU-Darmstadt (2003) http://elib.tu-darmstadt.de/diss/000303/diss.pdf

  17. Niemann, N.: On representability of *-regular rings and regular involutive rings in endomorphism rings of vector spaces. Ph.D. thesis, TU Darmstadt, 2007, Logos Verlag Berlin (2007)

  18. Petrich M.: Categories of Algebraic Systems, Vector and projective spaces, semigroups, rings and lattices. Lecture Notes in Mathematics, vol. 553. Springer-Verlag, Berlin-New York (1976)

    Google Scholar 

  19. Rogers, H.: Theory of Recursive Functions and Effective Computability. London (1992)

  20. Schweigert D.: Vollständige geometrische Verbände mit Polarität. Archiv der Math. 28, 233–237 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  21. Shoenfield, J.R.: Mathematical Logic. Association for Symbolic Logic, Urbana, IL, A K Peters, Ltd., Natick, MA (2001)

  22. Tyukavkin, D.V. Regular rings with involution. (Russian), Vestnik Moskovskogo Universiteta, Matematika 39, 29–32 (1984); translation, Moscow Univ. Math. Bull. 39, 38–41 (1984)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Herrmann.

Additional information

Presented by F. Wehrung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrmann, C. Complemented modular lattices with involution and orthogonal geometry. Algebra Univers. 61, 339 (2009). https://doi.org/10.1007/s00012-009-0003-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00012-009-0003-5

2000 Mathematics Subject Classification

Keywords and phrases

Navigation