Skip to main content

Advertisement

Log in

Uncovering the role of transient receptor potential channels in pterygium: a machine learning approach

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objectives

We aimed at identifying the role of transient receptor potential (TRP) channels in pterygium.

Methods

Based on microarray data GSE83627 and GSE2513, differentially expressed genes (DEGs) were screened and 20 hub genes were selected. After gene correlation analysis, 5 TRP-related genes were obtained and functional analyses of gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed. Multifactor regulatory network including mRNA, microRNAs (miRNAs) and transcription factors (TFs) was constructed. The 5 gene TRP signature for pterygium was validated by multiple machine learning (ML) programs including support vector classifiers (SVC), random forest (RF), and k-nearest neighbors (KNN). Additionally, we outlined the immune microenvironment and analyzed the candidate drugs. Finally, in vitro experiments were performed using human conjunctival epithelial cells (CjECs) to confirm the bioinformatics results.

Results

Five TRP-related genes (MCOLN1, MCOLN3, TRPM3, TRPM6, and TRPM8) were validated by ML algorithms. Functional analyses revealed the participation of lysosome and TRP-regulated inflammatory pathways. A comprehensive immune infiltration landscape and TFs-miRNAs-mRNAs network was studied, which indicated several therapeutic targets (LEF1 and hsa-miR-455-3p). Through correlation analysis, MCOLN3 was proposed as the most promising immune-related biomarker. In vitro experiments further verified the reliability of our in silico results and demonstrated that the 5 TRP-related genes could influence the proliferation and proinflammatory signaling in conjunctival tissue contributing to the pathogenesis of pterygium.

Conclusions

Our study suggested that TRP channels played an essential role in the pathogenesis of pterygium. The identified pivotal biomarkers (especially MCOLN3) and pathways provide novel directions for future mechanistic and therapeutic studies for pterygium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data can be obtained from the corresponding authors under reasonable request.

References

  1. Liu L, Wu J, Geng J, Yuan Z, Huang D. Geographical prevalence and risk factors for pterygium: a systematic review and meta-analysis. BMJ Open. 2013;3: e003787.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhao Z, Zhang J, Liang H, et al. Corneal reinnervation and sensitivity recovery after pterygium excision. J Ophthalmol. 2020;2020:1–8.

    Google Scholar 

  3. Van Acker SI, Van den Bogerd B, Haagdorens M, et al. Pterygium—the good, the bad, and the ugly. Cells. 2021;10:1567.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chui J, Coroneo MT, Tat LT, et al. Ophthalmic pterygium. Am J Pathol. 2011;178:817–27.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Artornsombudh P, Sanpavat A, Tinnungwattana U, et al. Prevalence and clinicopathologic findings of conjunctival epithelial neoplasia in pterygia. Ophthalmology. 2013;120:1337–40.

    Article  PubMed  Google Scholar 

  6. Ghiasian L, Samavat B, Hadi Y, Arbab M, Abolfathzadeh N. Recurrent pterygium: a review. J Curr Ophthalmol. 2021;33:367.

    Article  PubMed  Google Scholar 

  7. Chu WK, Choi HL, Bhat AK, Jhanji V. Pterygium: new insights. Eye. 2020;34:1047–50.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bradley JC, Yang W, Bradley RH, Reid TW, Schwab IR. The science of pterygia. Br J Ophthalmol. 2010;94:815–20.

    Article  CAS  PubMed  Google Scholar 

  9. Nilius B, Voets T, Peters J. TRP channels in disease. Sci STKE. 2005;2005(295):8.

    Article  Google Scholar 

  10. Wang H, Cheng X, Tian J, et al. TRPC channels: structure, function, regulation and recent advances in small molecular probes. Pharmacol Ther. 2020;209: 107497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Julius D. TRP channels and pain. Annu Rev Cell Dev Biol. 2013;29:355–84.

    Article  CAS  PubMed  Google Scholar 

  12. Nilius B, Owsianik G. The transient receptor potential family of ion channels. Genome Biol. 2011;12:218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khajavi N, Reinach PS, Slavi N, et al. Thyronamine induces TRPM8 channel activation in human conjunctival epithelial cells. Cell Signal. 2015;27:315–25.

    Article  CAS  PubMed  Google Scholar 

  14. Pan Z, Wang Z, Yang H, Zhang F, Reinach PS. TRPV1 activation is required for hypertonicity-stimulated inflammatory cytokine release in human corneal epithelial cells. Investig Opthalmology Vis Sci. 2011;52:485.

    Article  CAS  Google Scholar 

  15. Hirata H, Oshinsky ML. Ocular dryness excites two classes of corneal afferent neurons implicated in basal tearing in rats: involvement of transient receptor potential channels. J Neurophysiol. 2012;107:1199–209.

    Article  CAS  PubMed  Google Scholar 

  16. Trusiano B, Tupik JD, Allen IC. Cold sensor, hot topic: TRPM8 plays a role in monocyte function and differentiation. J Leukoc Biol. 2022;112:361.

    Article  CAS  PubMed  Google Scholar 

  17. Assimakopoulou M, Pagoulatos D, Nterma P, Pharmakakis N. Immunolocalization of cannabinoid receptor type 1 and CB2 cannabinoid receptors, and transient receptor potential vanilloid channels in pterygium. Mol Med Rep. 2017;16:5285–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Goecks J, Jalili V, Heiser LM, Gray JW. How machine learning will transform biomedicine. Cell. 2020;181:92–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ye B, Liu K, Cao S, et al. Discrimination of indoor versus outdoor environmental state with machine learning algorithms in myopia observational studies. J Transl Med. 2019;17:314.

    Article  PubMed  PubMed Central  Google Scholar 

  20. An G, Omodaka K, Tsuda S, et al. Comparison of machine-learning classification models for glaucoma management. J Healthc Eng. 2018;2018:1–8.

    Article  Google Scholar 

  21. Yan H, Shan X, Wei S, Liu F, Li W, Lei Y, et al. Abnormal spontaneous brain activities of limbic-cortical circuits in patients with dry eye disease. Front Hum Neurosci. 2020;14: 574758.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nwanosike EM, Conway BR, Merchant HA, Hasan SS. Potential applications and performance of machine learning techniques and algorithms in clinical practice: a systematic review. Int J Med Inf. 2022;159: 104679.

    Article  Google Scholar 

  23. Banna HU, Zanabli A, McMillan B, et al. Evaluation of machine learning algorithms for trabeculectomy outcome prediction in patients with glaucoma. Sci Rep. 2022;12:2473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sugimoto K, Murata H, Hirasawa H, et al. Cross-sectional study: does combining optical coherence tomography measurements using the ‘Random Forest’ decision tree classifier improve the prediction of the presence of perimetric deterioration in glaucoma suspects? BMJ Open. 2013;3: e003114.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Muhammad H, Fuchs TJ, De Cuir N, et al. Hybrid deep learning on single wide-field optical coherence tomography scans accurately classifies glaucoma suspects. J Glaucoma. 2017;26:1086–94.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Joshi VS, Maude RJ, Reinhardt JM, et al. Automated detection of malarial retinopathy-associated retinal hemorrhages. Investig Opthalmol Vis Sci. 2012;53:6582.

    Article  Google Scholar 

  27. Kishore B, Ananthamoorthy NP. Glaucoma classification based on intra-class and extra-class discriminative correlation and consensus ensemble classifier. Genomics. 2020;112:3089–96.

    Article  CAS  PubMed  Google Scholar 

  28. Zheng J. Molecular mechanism of TRP channels. Compr Physiol. 2013;3(1):221–42.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Venkatachalam K, Montell C. TRP Channels. Annu Rev Biochem. 2007;76:387–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu N, Yan C, Chen J, et al. Conjunctival reconstruction via enrichment of human conjunctival epithelial stem cells by p75 through the NGF-p75-SALL2 signaling axis. Stem Cells Transl Med. 2020;9:1448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu N, Gong D, Chen J, et al. Design of functional decellularized matrix for conjunctival epithelial stem cell maintenance and ocular surface reconstruction. Mater Des. 2022;224: 111278.

    Article  CAS  Google Scholar 

  32. Arora S, Rana R, Chhabra A, Jaiswal A, Rani V. miRNA–transcription factor interactions: a combinatorial regulation of gene expression. Mol Genet Genom. 2013;288:77–87.

    Article  CAS  Google Scholar 

  33. Golu T, Mogoant L, Streba CT, Pirici DN. Pterygium: histological and immunohistochemical aspects. Rom J Morphol Embryol. 2011;52(1):153–8.

    CAS  PubMed  Google Scholar 

  34. Tekelioglu Y, Turk A, Avunduk AM, Yulug E. Flow cytometrical analysis of adhesion molecules, T-lymphocyte subpopulations and inflammatory markers in pterygium. Ophthalmologica. 2006;220:372–8.

    Article  CAS  PubMed  Google Scholar 

  35. Di Girolamo N, Chui J, Coroneo MT, Wakefield D. Pathogenesis of pterygia: role of cytokines, growth factors, and matrix metalloproteinases. Prog Retin Eye Res. 2004;23:195–228.

    Article  PubMed  Google Scholar 

  36. Bianchp E, Grande C, Platerotp R, et al. Immunohistochemical profile of VEGF, TGF-β and PGE2 in human pterygium and normal conjunctiva: experimental study and review of the literature. Int J Immunopathol Pharmacol. 2012;25(3):607–15.

    Article  Google Scholar 

  37. Kim SW, Kim H-I, Thapa B, Nuwormegbe S, Lee K. Critical role of mTORC2-Akt signaling in TGF-β1-induced myofibroblast differentiation of human pterygium fibroblasts. Investig Opthalmol Vis Sci. 2019;60:82.

    Article  CAS  Google Scholar 

  38. Xie J, Ning Q, Zhang H, Ni S, Ye J. RhoA/ROCK signaling regulates TGF-β1-Induced fibrotic effects in human pterygium fibroblasts through MRTF-A. Curr Eye Res. 2022;47:196–205.

    Article  CAS  PubMed  Google Scholar 

  39. Vrenken KS, Jalink K, van Leeuwen FN, Middelbeek J. Beyond ion-conduction: channel-dependent and -independent roles of TRP channels during development and tissue homeostasis. Biochim Biophys Acta BBA Mol Cell Res. 2016;1863:1436–46.

    Article  CAS  Google Scholar 

  40. Gan N, Han Y, Zeng W, Wang Y, Xue J, Jiang Y. Structural mechanism of allosteric activation of TRPML1 by PI(3,5)P2 and rapamycin. Proc Natl Acad Sci. 2022;119: e2120404119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jaslan D, Böck J, Krogsaeter E, Grimm C. Evolutionary aspects of TRPMLs and TPCs. Int J Mol Sci. 2020;21:4181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li G, Huang D, Li N, Ritter JK, Li P-L. Regulation of TRPML1 channel activity and inflammatory exosome release by endogenously produced reactive oxygen species in mouse podocytes. Redox Biol. 2021;43:102013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wakabayashi K, Gustafson AM, Sidransky E, Goldin E. Mucolipidosis type IV: an update. Mol Genet Metab. 2011;104:206–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Noben-Trauth K. The TRPML3 channel: from gene to function. Adv Exp Med Biol. 2011;704:229–37.

    Article  CAS  PubMed  Google Scholar 

  45. Miao Y, Li G, Zhang X, Xu H, Abraham SN. A TRP channel senses lysosome neutralization by pathogens to trigger their expulsion. Cell. 2015;161:1306–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim HJ, Soyombo AA, Tjon-Kon-Sang S, So I, Muallem S. The Ca2+ channel TRPML3 regulates membrane trafficking and autophagy. Traffic Cph Den. 2009;10:1157–67.

    Article  CAS  Google Scholar 

  47. Zierler S. TRPM channels as potential therapeutic targets against pro-inflammatory diseases. Cell Calcium. 2017;67:105.

    Article  CAS  PubMed  Google Scholar 

  48. Held K, Voets T, Vriens J. TRPM3 in temperature sensing and beyond. Temp Austin Tex. 2015;2:201–13.

    Google Scholar 

  49. Takashina Y, Manabe A, Hasegawa H, et al. Sodium citrate increases expression and flux of Mg2+ transport carriers mediated by activation of MEK/ERK/c-Fos pathway in renal tubular epithelial cells. Nutrients. 2018;10:E1345.

    Article  Google Scholar 

  50. Yang F, Cai J, Zhan H, et al. Suppression of TRPM7 inhibited hypoxia-induced migration and invasion of androgen-independent prostate cancer cells by enhancing RACK1-Mediated degradation of HIF-1α. Oxid Med Cell Longev. 2020;2020:6724810.

    PubMed  PubMed Central  Google Scholar 

  51. Khalil M, Babes A, Lakra R, et al. Transient receptor potential melastatin 8 ion channel in macrophages modulates colitis through a balance-shift in TNF-alpha and interleukin-10 production. Mucosal Immunol. 2016;9:1500–13.

    Article  CAS  PubMed  Google Scholar 

  52. Chui J, Girolamo ND, Wakefield D, Coroneo MT. The pathogenesis of pterygium: current concepts and their therapeutic implications. Ocul Surf. 2008;6:24–43.

    Article  PubMed  Google Scholar 

  53. Anguria P, Carmichael T, Ntuli S, Kitinya J. Chronic inflammatory cells and damaged limbal cells in pterygium. Afr Health Sci. 2013;13:725–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Garreis F, Schroder A, Reinach PS, et al. Upregulation of transient receptor potential vanilloid Type-1 channel activity and and Ca2+ influx dysfunction in human pterygial cells. Invest Ophthalmol Vis Sci. 2016;57(6):2564–77.

    Article  CAS  PubMed  Google Scholar 

  55. Sumioka T, Okada Y, Reinach PS, et al. Impairment of corneal epithelial wound healing in a TRPV1-deficient mouse. Investig Opthalmol Vis Sci. 2014;55:3295.

    Article  CAS  Google Scholar 

  56. Hobert O. Common logic of transcription factor and microRNA action. Trends Biochem Sci. 2004;29:462–8.

    Article  CAS  PubMed  Google Scholar 

  57. Ghafouri-Fard S, Abak A, Fattahi F, et al. The interaction between miRNAs/lncRNAs and nuclear factor-κB (NF-κB) in human disorders. Biomed Pharmacother Biomed Pharmacother. 2021;138: 111519.

    Article  CAS  PubMed  Google Scholar 

  58. Ueta M, Nishigaki H, Sotozono C, et al. Regulation of gene expression by miRNA-455-3p, upregulated in the conjunctival epithelium of patients with Stevens-Johnson syndrome in the chronic stage. Sci Rep. 2020;10:17239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kato N, Shimmura S, Kawakita T, et al. β-Catenin activation and epithelial-mesenchymal transition in the pathogenesis of pterygium. Investig Opthalmol Vis Sci. 2007;48:1511.

    Article  Google Scholar 

  60. Huebner K, Procházka J, Monteiro AC, Mahadevan V, Schneider-Stock R. The activating transcription factor 2: an influencer of cancer progression. Mutagenesis. 2019;34:375–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Katoh M. Genomic testing, tumor microenvironment and targeted therapy of Hedgehog-related human cancers. Clin Sci. 2019;133:953–70.

    Article  CAS  Google Scholar 

  62. Principe DR. Patients deriving long-term benefit from immune checkpoint inhibitors demonstrate conserved patterns of site-specific mutations. Sci Rep. 2022;12:11490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tong L, Lan W, Lim RR, Chaurasia SS. S100A proteins as molecular targets in the ocular surface inflammatory diseases. Ocul Surf. 2014;12:23–31.

    Article  PubMed  Google Scholar 

  64. Maxia C, Murtas D, Corrias M, et al. Vitamin D and vitamin D receptor in patients with ophthalmic pterygium. Eur J Histochem. 2017;61(4):2837.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Skurikhin E, Pershina O, Zhukova M, et al. Spiperone stimulates regeneration in pulmonary endothelium damaged by cigarette smoke and lipopolysaccharide. Int J Chron Obstruct Pulmon Dis. 2021;16:3575–91.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Skurikhin E, Madonov P, Pershina O, et al. Micellar hyaluronidase and spiperone as a potential treatment for pulmonary fibrosis. Int J Mol Sci. 2021;22:5599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kistemaker LEM, Gosens R. Acetylcholine beyond bronchoconstriction: roles in inflammation and remodeling. Trends Pharmacol Sci. 2015;36:164–71.

    Article  CAS  PubMed  Google Scholar 

  68. Yang Q, Jhanji V, Tan SQ, et al. Continuous exposure of nicotine and cotinine retards human primary pterygium cell proliferation and migration. J Cell Biochem. 2019;120:4203–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere gratitude to the GEO database for sharing the transcriptome data. We also thank the Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology for providing the research platform.

Funding

This work was supported by the National Natural Science Foundation of China (No.81770888 and 82271041).

Author information

Authors and Affiliations

Authors

Contributions

YC: data interpretation, in vitro experiment, and manuscript writing. TZ: machine learning and in vitro experiment. JC: manuscript revision. XC: study design, data collection and interpretation. YF: manuscript revision and study supervision. All authors have approved the final manuscript.

Corresponding authors

Correspondence to Xueyao Cai or Yao Fu.

Ethics declarations

Conflict of interest

No conflict of interest is declared.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Y., Zhou, T., Chen, J. et al. Uncovering the role of transient receptor potential channels in pterygium: a machine learning approach. Inflamm. Res. 72, 589–602 (2023). https://doi.org/10.1007/s00011-023-01693-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-023-01693-4

Keywords

Navigation