Skip to main content

Advertisement

Log in

FK506 impairs neutrophil migration that results in increased polymicrobial sepsis susceptibility

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

This study aimed to investigate the effects of FK506 on experimental sepsis immunopathology. It investigated the effect of FK506 on leukocyte recruitment to the site of infection, systemic cytokine production, and organ injury in mice with sepsis.

Methods

Using a murine cecal ligation and puncture (CLP) peritonitis model, the experiments were performed with wild-type (WT) mice and mice deficient in the gene Nfat1 (Nfat1−/−) in the C57BL/6 background. Animals were treated with 2.0 mg/kg of FK506, subcutaneously, 1 h before the sepsis model, twice a day (12 h/12 h). The number of bacteria colony forming units (CFU) was manually counted. The number of neutrophils in the lungs was estimated by the myeloperoxidase (MPO) assay. The expression of CXCR2 in neutrophils was determined using flow cytometry analysis. The expression of inflammatory cytokines in macrophage was determined using ELISA. The direct effect of FK506 on CXCR2 internalization was evaluated using HEK-293T cells after CXCL2 stimulation by the BRET method.

Results

FK506 treatment potentiated the failure of neutrophil migration into the peritoneal cavity, resulting in bacteremia and an exacerbated systemic inflammatory response, which led to higher organ damage and mortality rates. Failed neutrophil migration was associated with elevated CXCL2 chemokine plasma levels and lower expression of the CXCR2 receptor on circulating neutrophils compared with non-treated CLP-induced septic mice. FK506 did not directly affect CXCL2-induced CXCR2 internalization by transfected HEK-293 cells or mice neutrophils, despite increasing CXCL2 release by LPS-treated macrophages. Finally, the CLP-induced response of Nfat1−/− mice was similar to those observed in the Nfat1+/+ genotype, suggesting that the FK506 effect is not dependent on the NFAT1 pathway.

Conclusion

Our data indicate that the increased susceptibility to infection of FK506-treated mice is associated with failed neutrophil migration due to the reduced membrane availability of CXCR2 receptors in response to exacerbated levels of circulating CXCL2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Singer M, Deutschman CS, Seymour C, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). J Am Med Assoc. 2016;315:801–10.

    Article  CAS  Google Scholar 

  2. Florescu DF, Sandkovsky U, Kalil AC. Sepsis and challenging infections in the immunosuppressed patient in the intensive care unit. Infect Dis Clin North Am. 2017;31:415–34.

    Article  PubMed  Google Scholar 

  3. Kalil AC, Sandkovsky U, Florescu DF. Severe infections in critically ill solid organ transplant recipients. Clin Microbiol Infect. 2018;24:1257–63. https://doi.org/10.1016/j.cmi.2018.04.022.

    Article  CAS  PubMed  Google Scholar 

  4. Kalil AC, Dakroub AGFH. HIV and solid organ transplantation. Hopkins HIV Rep. 2003;15:5–8.

    Google Scholar 

  5. Syu SH, Lin YW, Lin KH, Lee LM, Hsiao CH, Wen YC. Risk factors for complications and graft failure in kidney transplant patients with sepsis. Bosn J Basic Med Sci. 2019;19:304–11.

    PubMed  PubMed Central  Google Scholar 

  6. Creamer TP. Calcineurin. 2020;4:1–12

  7. Clipstone NA, Fiorentino DF, Crabtree GR. Molecular analysis of the interaction of calcineurin with drug- immunophilin complexes. J Biol Chem [Internet]. © 1994 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. 1994;269:26431–7. Available from: https://doi.org/10.1016/S0021-9258(18)47212-2

  8. Shaw KTY, Ho AM, Raghavan A, Kim J, Jain J, Park J, et al. Immunosuppressive drugs prevent a rapid dephosphorylation of transcription factor NFAT1 in stimulated immune cells. Proc Natl Acad Sci USA. 1995;92:11205–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kiani A, Rao A, Aramburu J. Manipulating immune responses with immunosuppressive agents that target NFAT. Immunity. 2000;12:359–72.

    Article  CAS  PubMed  Google Scholar 

  10. Healy JI, Dolmetsch RE, Timmerman LA, Cyster JG, Thomas ML, Crabtree GR, et al. Different nuclear signals are activated by the B cell receptor during positive versus negative signaling. Immunity. 1997;6:419–28.

    Article  CAS  PubMed  Google Scholar 

  11. Hutchinson LE, McCloskey MA. FcεRI-mediated induction of nuclear factor of activated T-cells. J Biol Chem. 1995;270:16333–8.

    Article  CAS  PubMed  Google Scholar 

  12. Aramburu J, Azzoni L, Rao A, Perussia B. Activation and expression of the nuclear factors of activated T cells, NFATp and NFATc, in human natural killer cells: regulation upon CD16 ligand binding. J Exp Med. 1995;182:801–10.

    Article  CAS  PubMed  Google Scholar 

  13. Liu Z, Dronadula N, Rao GN. A novel role for nuclear factor of activated T cells in receptor tyrosine kinase and G protein-coupled receptor agonist-induced vascular smooth muscle cell motility. J Biol Chem. 2004;279:41218–26.

    Article  CAS  PubMed  Google Scholar 

  14. Ichida M, Finkel T. Ras regulates NFAT3 activity in cardiac myocytes. J Biol Chem. 2001;276:3524–30.

    Article  CAS  PubMed  Google Scholar 

  15. Goodridge HS, Simmons RM, Underhill DM. Dectin-1 stimulation by Candida albicans yeast or zymosan triggers NFAT activation in macrophages and dendritic cells. J Immunol. 2007;178:3107–15.

    Article  CAS  PubMed  Google Scholar 

  16. Calderon-Sanchez E, Rodriguez-Moyano M, Smani T. Immunophilins and cardiovascular complications. Curr Med Chem. 2011;18:5408–13.

    Article  CAS  PubMed  Google Scholar 

  17. Nauseef WM, Borregaard N. Neutrophils at work. Nat Immunol. 2014;15:602–11.

    Article  CAS  PubMed  Google Scholar 

  18. Sônego F, Castanheira FVeS, Ferreira RG, Kanashiro A, Leite CAVG, Nascimento DC, et al. Paradoxical roles of the neutrophil in sepsis: Protective and deleterious. Front Immunol. 2016;7:1–7.

    Article  Google Scholar 

  19. Farias Benjamim C, Santana Silva J, Bruno Fortes Z, Aparecida Oliveira M, Henrique Ferreira S, Queiroz CF. Inhibition of leukocyte rolling by nitric oxide during sepsis leads to reduced migration of active microbicidal neutrophils. Infect Immun. 2002;70:3602–10.

    Article  Google Scholar 

  20. Torres-Dueñas D, Benjamim CF, Ferreira SH, Cunha FQ. Failure of neutrophil migration to infectious focus and cardiovascular changes on sepsis in rats: effects of the inhibition of nitric oxide production, removal of infectious focus, and antimicrobial treatment. Shock. 2006;25:267–76.

    Article  PubMed  Google Scholar 

  21. Freitas A, Alves-Filho JC, Trevelin SC, Spiller F, Suavinha MM, Nascimento DC, et al. Divergent role of heme oxygenase inhibition in the pathogenesis of sepsis. Shock. 2011;35:550–9.

    Article  CAS  PubMed  Google Scholar 

  22. Rios-Santos F, Alves-Filho JC, Souto FO, Spiller F, Freitas A, Lotufo CMC, et al. Down-regulation of CXCR2 on neutrophils in severe sepsis is mediated by inducible nitric oxide synthase-derived nitric oxide. Am J Respir Crit Care Med. 2007;175:490–7.

    Article  CAS  PubMed  Google Scholar 

  23. Alves-Filho JC, Freitas A, Souto FO, Spiller F, Paula-Neto H, Silva JS, et al. Regulation of chemokine receptor by Toll-like receptor 2 is critical to neutrophil migration and resistance to polymicrobial sepsis. Proc Natl Acad Sci USA. 2009;106:4018–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Arraes SMA, Freitas MS, Da Silva SV, De Paula Neto HA, Alves-Filho JC, Martins MA, et al. Impaired neutrophil chemotaxis in sepsis associates with GRK expression and inhibition of actin assembly and tyrosine phosphorylation. Blood. 2006;108:2906–13.

    Article  CAS  PubMed  Google Scholar 

  25. Kurowska-Stolarska M, Stolarski B, Kewin P, Murphy G, Corrigan CJ, Ying S, et al. IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. J Immunol. 2009;183:6469–77.

    Article  CAS  PubMed  Google Scholar 

  26. Souto FO, Alves-Filho JC, Turato WM, Auxiliadora-Martins M, Basile-Filho A, Cunha FQ. Essential role of CCR2 in neutrophil tissue infiltration and multiple organ dysfunction in sepsis. Am J Respir Crit Care Med. 2011;183:234–42.

    Article  CAS  PubMed  Google Scholar 

  27. Namkung Y, Le Gouill C, Lukashova V, Kobayashi H, Hogue M, Khoury E, et al. Monitoring G protein-coupled receptor and β-arrestin trafficking in live cells using enhanced bystander BRET. Nat Commun. 2016;7:1–12.

  28. Herbst S, Shah A, Carby M, Chusney G, Kikkeri N, Dorling A, et al. A new and clinically relevant murine model of solid-organ transplant aspergillosis. DMM Dis Model Mech. 2013;6:643–51.

    CAS  PubMed  Google Scholar 

  29. Parreiras-E-Silva LT, Vargas-Pinilla P, Duarte DA, Longo D, Espinoza Pardo GV, Finkler AD, et al. Functional New World monkey oxytocin forms elicit an altered signaling profile and promotes parental care in rats. Proc Natl Acad Sci USA. 2017;114:9044–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shiratori M, Tozaki-Saitoh H, Yoshitake M, Tsuda M, Inoue K. P2X7 receptor activation induces CXCL2 production in microglia through NFAT and PKC/MAPK pathways. J Neurochem. 2010;114:810–9.

    Article  CAS  PubMed  Google Scholar 

  31. Zelante T, Wong AYW, Mencarelli A, Foo S, Zolezzi F, Lee B, et al. Impaired calcineurin signaling in myeloid cells results in downregulation of pentraxin-3 and increased susceptibility to aspergillosis. Mucosal Immunol. 2017;10:470–80. https://doi.org/10.1038/mi.2016.52.

    Article  CAS  PubMed  Google Scholar 

  32. Bendickova K, Tidu F, Fric J. Calcineurin– NFAT signalling in myeloid leucocytes: new prospects and pitfalls in immunosuppressive therapy. EMBO Mol Med. 2017;9:990–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Martin KR, Layton D, Seach N, Corlett A, Barallobre MJ, Arbonés ML, et al. Upregulation of RCAN1 causes down syndrome-like immune dysfunction. J Med Genet. 2013;50:444–54.

    Article  CAS  PubMed  Google Scholar 

  34. Junkins RD, MacNeil AJ, Wu Z, McCormick C, Lin T-J. Regulator of calcineurin 1 suppresses inflammation during respiratory tract infections. J Immunol. 2013;190:5178–86.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang S, Rahman M, Zhang S, Qi Z, Thorlacius H. Simvastatin antagonizes CD40L secretion, CXC chemokine formation, and pulmonary infiltration of neutrophils in abdominal sepsis. J Leukoc Biol. 2011;89:735–42.

    Article  CAS  PubMed  Google Scholar 

  36. Hwaiz R, Rahman M, Syk I, Zhang E, Thorlacius H. Rac1-dependent secretion of platelet-derived CCL5 regulates neutrophil recruitment via activation of alveolar macrophages in septic lung injury. J Leukoc Biol. 2015;97:975–84.

    Article  CAS  PubMed  Google Scholar 

  37. Hack C, De Groot E, Felt-Bersma R, Nuijens J, Strack Van Schijndel R, Eerenberg-Belmer A, et al. Increased plasma levels of interleukin-6 in sepsis. Blood. 1989;74:1704–10

  38. Song J, Park DW, Moon S, Cho HJ, Park JH, Seok H, et al. Diagnostic and prognostic value of interleukin-6, pentraxin 3, and procalcitonin levels among sepsis and septic shock patients: a prospective controlled study according to the sepsis-3 definitions. BMC Infect Dis BMC Infect Dis. 2019;19:1–11.

    Google Scholar 

  39. Nemzek JA, Elisa I-. Six at six : interleukin-6 measured 6 H after the initiation of sepsis predicts mortality over 3 days. Daniel G. Remick,* Gerald R. Bolgos,* Javed Siddiqui,* Jungsoon Shin, † and. Crit Care Med. 2002;17:463–7.

  40. Remick DG, Bolgos G, Copeland S, Siddiqui J. Role of interleukin-6 in mortality from and physiologic response to sepsis. Infect Immun. 2005;73:2751–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Murayama K, Sawamura M, Murakami H, Tamura J, Naruse T, Murakami H, et al. FK506 and cyclosporin A enhance IL-6 production in monocytes: a single-cell assay. Mediators Inflamm. 1994;3:375–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ermert D, Zychlinsky A, Urban C. Fungal and bacterial killing by neutrophils. Methods Mol Biol. 2008;470:293–312.

    Article  Google Scholar 

  43. Zweemer AJM, Toraskar J, Heitman LH, Ijzerman AP. Bias in chemokine receptor signalling. Trends Immunol. 2014;35:243–52. https://doi.org/10.1016/j.it.2014.02.004.

    Article  CAS  PubMed  Google Scholar 

  44. Rajagopal S, Bassoni DL, Campbell JJ, Gerard NP, Gerard C, Wehrman TS. Biased agonism as a mechanism for differential signaling by chemokine receptors. J Biol Chem. 2013;288:35039–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Emal D, Rampanelli E, Claessen N, Bemelman FJ, Leemans JC, Florquin S, et al. Calcineurin inhibitor tacrolimus impairs host immune response against urinary tract infection. Sci Rep. 2019;9:1–11. https://doi.org/10.1038/s41598-018-37482-x.

    Article  CAS  Google Scholar 

  46. MacMillan D, Currie S, Bradley KN, Muir TC, McCarron JG. In smooth muscle, FK506-binding protein modulates IP3 receptor-evoked Ca2+ release by mTOR and calcineurin. J Cell Sci. 2005;118:5443–51.

    Article  CAS  PubMed  Google Scholar 

  47. Buckley C, Wilson C, McCarron JG. FK506 regulates Ca2+ release evoked by inositol 1,4,5-trisphosphate independently of FK-binding protein in endothelial cells. Br J Pharmacol. 2020;177:1131–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tang WX, Chen YF, Zou AP, Campbell WB, Li PL. Role of FKBP12.6 in cADPR-induced activation of reconstituted ryanodine receptors from arterial smooth muscle. Am J Physiol Hear Circ Physiol. 2002;282:1304–10.

    Article  Google Scholar 

  49. MacMillan D, Currie S, McCarron JG. FK506-binding protein (FKBP12) regulates ryanodine receptor-evoked Ca2+ release in colonic but not aortic smooth muscle. Cell Calcium. 2008;43:539–49.

    Article  CAS  PubMed  Google Scholar 

  50. MacMillan D, McCarron JG. Regulation by FK506 and rapamycin of Ca2+ release from the sarcoplasmic reticulum in vascular smooth muscle: the role of FK506 binding proteins and mTOR. Br J Pharmacol. 2009;158:1112–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Leon-Aparicio D, Chavez-Reyes J, Guerrero-Hernandez A. Activation of endoplasmic reticulum calcium leak by 2-APB depends on the luminal calcium concentration. Cell Calcium. 2017;65:80–90. https://doi.org/10.1016/j.ceca.2017.01.013.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang S, Zhang S, Garcia-Vaz E, Herwald H, Gomez MF, Thorlacius H. Streptococcal M1 protein triggers chemokine formation, neutrophil infiltration, and lung injury in an NFAT-dependent manner. J Leukoc Biol. 2015;97:1003–10.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang S, Luo L, Wang Y, Gomez MF, Thorlaciusa H. Nuclear factor of activated T cells regulates neutrophil recruitment, systemic inflammation, and T-cell dysfunction in abdominal sepsis. Infect Immun. 2014;82:3275–88.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Awla D, Zetterqvist AV, Abdulla A, Camello C, Berglund LM, Spégel P, et al. NFATc3 regulates trypsinogen activation, neutrophil recruitment, and tissue damage in acute pancreatitis in mice. Gastroenterology. 2012;143:1352–1360.e7. https://doi.org/10.1053/j.gastro.2012.07.098.

    Article  CAS  PubMed  Google Scholar 

  55. Tourneur E, Ben Mkaddem S, Chassin C, Bens M, Goujon JM, Charles N, et al. Cyclosporine A impairs nucleotide binding oligomerization domain (Nod1)-mediated innate antibacterial renal defenses in mice and human transplant recipients. PLoS Pathog. 2013;9:1–16.

  56. Wang D, Chen X, Fu M, Xu H, Li Z. Tacrolimus increases the expression level of the chemokine receptor CXCR2 to promote renal fibrosis progression. Int J Mol Med. 2019;44:2181–8.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the São Paulo Research Foundation (FAPESP) (grants: 13/08216-2) and the National Council of Technological and Scientific Development (CNPq–Brazil). VFB and LSG hold a PhD scholarship from FAPESP (grants: 17/18264-5 and 20/08109-5).

Author information

Authors and Affiliations

Authors

Contributions

VFB, LSG, AK, and FQC designed the study. VFB, LSG, AK, FVSC, VVSM, DAD, FCR, AHS, GCMC, CMSS, and MHFL performed the mouse experiments. VFB, LSG, AK, and FQC wrote the manuscript. VFB, LSG, AK, FVSC, VVSM, AHS, GCMC, CMSS, MHFL, JPBV, TMC, CMCN, JCFAF, ASP, and FQC reviewed the manuscript.

Corresponding author

Correspondence to Fernando de Queiroz Cunha.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borges, V., Galant, L.S., Kanashiro, A. et al. FK506 impairs neutrophil migration that results in increased polymicrobial sepsis susceptibility. Inflamm. Res. 72, 203–215 (2023). https://doi.org/10.1007/s00011-022-01669-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-022-01669-w

Keywords

Navigation