Skip to main content

Advertisement

Log in

Metabolic reprogramming as a key regulator in the pathogenesis of rheumatoid arthritis

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Purpose

Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease with synovitis as pathological changes. The immune microenvironment of RA promotes metabolic reprogramming of immune cells and stromal cells, which leads to dysfunction and imbalance of immune homeostasis. Cell metabolism undergoes the switch from a static regulatory state to a highly metabolic active state, which changes the redox-sensitive signaling pathway and also leads to the accumulation of metabolic intermediates, which in turn can act as signaling molecules and further aggravate the inflammatory response. The reprogramming of immunometabolism affects the function of immune cells and is crucial to the pathogenesis of RA. In addition, mitochondrial dysfunction plays a key role in glycolytic reprogramming in RA. These metabolic changes may be potential therapeutic targets for RA. Therefore, we reviewed the metabolic reprogramming of RA immune cells and fibroblast-like synovium cells (FLS) and its relationship with mitochondrial dysfunction.

Methods

A computer-based online search was performed using the PubMed database and Web of Science database for published articles concerning immunometabolic reprogramming, mitochondrial dysfunction, and rheumatoid arthritis.

Results

This article reviews the metabolic reprogramming of immune cells and fibroblast-like synoviocytes in RA and their relationship to mitochondrial disfunction, as well as the key pro-inflammatory pathways associated with metabolic reprogramming and chemotherapy as a potential future therapeutic strategy for RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yap H-Y, Tee SZ-Y, Wong MM-T, Chow S-K, Peh S-C, Teow S-Y. Pathogenic role of immune cells in rheumatoid arthritis: implications in clinical treatment and biomarker development[J]. Cells. 2018;7:10.

    Google Scholar 

  2. Alvandpur N, Tabatabaei R, Tahamoli-Roudsari A, Basiri Z, Behzad M, Rezaeepoor M, et al. Circulating IFN-gamma producing CD4+ T cells and IL-1 7A producing CD4+ T cells, HLA-shared epitope and ACPA may characterize the clinical response to therapy in rheumatoid arthritis patients[J]. Hum Immunol. 2020

  3. Morita T, Shima Y, Wing JB, Sakaguchi S, Ogata A, Kumanogoh A. The proportion of regulatory T cells in patients with rheumatoid arthritis: a meta-analysis[J]. PLoS ONE. 2016;11(9):e0162306.

    PubMed  PubMed Central  Google Scholar 

  4. Hu X-X, Wu Y-j, Zhang J, Wei W. T-cells interact with B cells, dendritic cells, and fibroblast-like synoviocytes as hub-like key cells in rheumatoid arthritis[J]. Int Immunopharmacol. 2019;70:428–34.

    CAS  PubMed  Google Scholar 

  5. Warburg O. On the origin of cancer cells[J]. Science. 1956;123(3191):309–14 (New York, N.Y.).

    CAS  PubMed  Google Scholar 

  6. Fracchia KM, Walsh CM. Metabolic mysteries of the inflammatory response: T cell polarization and plasticity[J]. Int Rev Immunol. 2015;34(1):3–18.

    CAS  PubMed  Google Scholar 

  7. Madeira VMC. Overview of mitochondrial bioenergetics[J]. Methods Mol Biol. 2018;1782:1–6.

    CAS  PubMed  Google Scholar 

  8. Maldonado EN, Lemasters JJ. ATP/ADP ratio, the missed connection between mitochondria and the Warburg effect[J]. Mitochondrion. 2014;19:78–84.

    CAS  PubMed  Google Scholar 

  9. Pearce EL, Pearce EJ. Metabolic pathways in immune cell activation and quiescence[J]. Immunity. 2013;38(4):633–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Stathopoulou C, Nikoleri D, Bertsias G. Immunometabolism: an overview and therapeutic prospects in autoimmune diseases[J]. Immunotherapy. 2019;11(9):813–29.

    CAS  PubMed  Google Scholar 

  11. Young SP, Kapoor SR, Viant MR, Byrne JJ, Filer A, Buckley CD, et al. The impact of inflammation on metabolomic profiles in patients with arthritis[J]. Arthritis Rheum. 2013;65(8):2015–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Okano T, Saegusa J, Nishimura K, Takahashi S, Sendo S, Ueda Y, et al. 3-bromopyruvate ameliorate autoimmune arthritis by modulating Th17/Treg cell differentiation and suppressing dendritic cell activation[J]. Sci Rep. 2017;7:42412.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Abboud G, Choi S-C, Kanda N, Zeumer-Spataro L, Roopenian DC, Morel L. Inhibition of glycolysis reduces disease severity in an autoimmune model of rheumatoid arthritis[J]. Front Immunol. 2018;9:1973.

    PubMed  PubMed Central  Google Scholar 

  14. Song G, Lu Q, Fan H, Zhang X, Ge L, Tian R, et al. Inhibition of hexokinases holds potential as treatment strategy for rheumatoid arthritis[J]. Arthritis Res Ther. 2019;21:87.

    PubMed  PubMed Central  Google Scholar 

  15. Kumar P, Yao LJ, Saidin S, Paleja B, Van Loosdregt J, Chua C, et al. Molecular mechanisms of autophagic memory in pathogenic T cells in human arthritis[J]. J Autoimmun. 2018;94:90–8.

    CAS  PubMed  Google Scholar 

  16. De Biasi S, Simone AM, Bianchini E, Lo Tartaro D, Pecorini S, Nasi M, et al. Mitochondrial functionality and metabolism in T cells from progressive multiple sclerosis patients[J]. Eur J Immunol. 2019;49:2204–21.

    PubMed  Google Scholar 

  17. Yzafhamsagjaw CM. Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells[J]. J Exp Med. 2013;210(10):2119–344.

    Google Scholar 

  18. Yang Z, Fujii H, Mohan SV, Goronzy JJ, Weyand CM. Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells[J]. J Exp Med. 2013;210(10):2119–344.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang Z, Shen Y, Oishi H, Matteson EL, Tian L, Goronzy JJ, et al. Restoring oxidant signaling suppresses proarthritogenic T cell effector functions in rheumatoid arthritis[J]. Sci Transl Med. 2016;8(331):331ra38.

    PubMed  PubMed Central  Google Scholar 

  20. Akimoto M, Yunoue S, Otsubo H, Yoshitama T, Kodama K, Matsushita K, et al. Assessment of peripheral blood CD4+adenosine triphosphate activity in patients with rheumatoid arthritis[J]. Mod Rheumatol. 2013;23(1):19–27.

    PubMed  Google Scholar 

  21. Angiari S, Runtsch MC, Sutton CE, Palsson-McDermott EM, Kelly B, Rana N, et al. Pharmacological activation of pyruvate kinase M2 inhibits CD4(+) T cell pathogenicity and suppresses autoimmunity[J]. Cell Metabo. 2020;31(2):391.

    CAS  Google Scholar 

  22. Kono M, Maeda K, Stocton-Gavanescu I, Pan W, Umeda M, Katsuyama E, et al. Pyruvate kinase M2 is requisite for Th1 and Th17 differentiation[J]. Jci Insight. 2019;4(12):1.

    Google Scholar 

  23. Sauer H, Wartenberg M, Hescheler J. Reactive oxygen species as intracellular messengers during cell growth and differentiation[J]. Cell Physiol Biochem. 2001;11(4):173–86.

    CAS  PubMed  Google Scholar 

  24. Iyama T, Wilson DM III. DNA repair mechanisms in dividing and non-dividing cells[J]. DNA Repair. 2013;12(8):620–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Li Y, Shen Y, Hohensinner P, Ju J, Wen Z, Goodman SB, et al. Deficient activity of the nuclease MRE11A induces T cell aging and promotes arthritogenic effector functions in patients with rheumatoid arthritis[J]. Immunity. 2016;45(4):903–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hajizadeh S, DeGroot J, TeKoppele JM, Tarkowski A, Collins LV. Extracellular mitochondrial DNA and oxidatively damaged DNA in synovial fluid of patients with rheumatoid arthritis[J]. Arthritis Res Ther. 2003;5(5):R234–R240240.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Nakahira K, Haspel JA, Rathinam VAK, Lee S-J, Dolinay T, Lam HC, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome[J]. Nat Immunol. 2011;12(3):222–U257.

    CAS  PubMed  Google Scholar 

  28. Goetzl EJ, Falchuk KH, Zeiger LS, Sullivan AL, Hebert CL, Adams JP, et al. A physiological approach to the assessment of disease activity in rheumatoid arthritis[J]. J Clin Investig. 1971;50(6):1167–80.

    CAS  PubMed  Google Scholar 

  29. Maria Quinonez-Flores C, Aidee Gonzalez-Chavez S, Pacheco-Tena C. Hypoxia and its implications in rheumatoid arthritis[J]. J Biomed Sci. 2016;23:62.

    Google Scholar 

  30. Hua S, Dias TH. Hypoxia-inducible factor (HIF) as a target for novel therapies in rheumatoid arthritis[J]. Front Pharmacol. 2016;7:184.

    PubMed  PubMed Central  Google Scholar 

  31. Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, et al. HIF1 alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of T(H)17 and T-reg cells[J]. J Exp Med. 2011;208(7):1367–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Haas R, Smith J, Rocher-Ros V, Nadkarni S, Montero-Melendez T, D'Acquisto F, et al. Lactate regulates metabolic and proinflammatory circuits in control of T cell migration and effector functions[J]. Plos Biol. 2015;13(7):e1002202.

    PubMed  PubMed Central  Google Scholar 

  33. Alvarez-Errico D, Vento-Tormo R, Ballestar E. Genetic and epigenetic determinants in autoinflammatory diseases[J]. Front Immunol. 2017;8:318.

    PubMed  PubMed Central  Google Scholar 

  34. Udalova IA, Mantovani A, Feldmann M. Macrophage heterogeneity in the context of rheumatoid arthritis[J]. Nat Rev Rheumatol. 2016;12(8):472–85.

    CAS  PubMed  Google Scholar 

  35. Rodrigues HM, Juengel A, Gay RE, Gay S. Innate immunity, epigenetics and autoimmunity in rheumatoid arthritis[J]. Mol Immunol. 2009;47(1):12–8.

    Google Scholar 

  36. Di Benedetto P, Ruscitti P, Vadasz Z, Toubi E, Giacomelli R. Macrophages with regulatory functions, a possible new therapeutic perspective in autoimmune diseases[J]. Autoimmun Rev. 2019;18(10):102369.

    PubMed  Google Scholar 

  37. O'Neill LAJ, Pearce EJ. Immunometabolism governs dendritic cell and macrophage function[J]. J Exp Med. 2016;213(1):15–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Levi EH, Watad A, Whitby A, Tiosano S, Comaneshter D, Cohen AD, et al. Coexistence of ischemic heart disease and rheumatoid arthritis patients—a case control study[J]. Autoimmun Rev. 2016;15(4):393–6.

    Google Scholar 

  39. Shirai T, Nazarewicz RR, Wallis BB, Yanes RE, Watanabe R, Hilhorst M, et al. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease[J]. J Exp Med. 2016;213(3):337–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gao X, Wang H, Yang JJ, Liu X, Liu Z-R. Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase[J]. Mol Cell. 2012;45(5):598–609.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang P, Li Z, Li H, Lu Y, Wu H, Li Z. Pyruvate kinase M2 accelerates pro-inflammatory cytokine secretion and cell proliferation induced by lipopolysaccharide in colorectal cancer[J]. Cell Signal. 2015;27(7):1525–32.

    CAS  PubMed  Google Scholar 

  42. Yang P, Li Z, Fu R, Wu H, Li Z. Pyruvate kinase M2 facilitates colon cancer cell migration via the modulation of STAT3 signalling[J]. Cell Signal. 2014;26(9):1853–62.

    CAS  PubMed  Google Scholar 

  43. Kong Q, Li N, Cheng H, Zhang X, Cao X, Qi T, et al. HSPA12A is a novel player in nonalcoholic steatohepatitis via promoting nuclear PKM2-mediated M1 macrophage polarization[J]. Diabetes. 2019;68(2):361–76.

    CAS  PubMed  Google Scholar 

  44. Xu D, Liang J, Lin J, Yu C. PKM2: a potential regulator of rheumatoid arthritis via glycolytic and non-glycolytic pathways[J]. Front Immunol. 2019;10:2919.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu J, Jiang C, Wang X, Geng M, Peng Y, Guo Y, et al. Upregulated PKM2 in macrophages exacerbates experimental arthritis via STAT1 signaling[J]. Jo Immunol. 2020;205(1):181–92.

    CAS  Google Scholar 

  46. Wilkinson LS, Pitsillides AA, Worrall JG, Edwards JC. Light microscopic characterization of the fibroblast-like synovial intimal cell (synoviocyte)[J]. Arthritis Rheum. 1992;35(10):1179–84.

    CAS  PubMed  Google Scholar 

  47. Smith MD. The normal synovium[J]. Open Rheumatol J. 2011;5:100–6.

    PubMed  PubMed Central  Google Scholar 

  48. Bottini N, Firestein GS. Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors[J]. Nat Rev Rheumatol. 2013;9(1):24–33.

    CAS  PubMed  Google Scholar 

  49. Wang J-G, Xu W-D, Zhai W-T, Li Y, Hu J-W, Hu B, et al. Disorders in angiogenesis and redox pathways are main factors contributing to the progression of rheumatoid arthritis a comparative proteomics study[J]. Arthritis Rheum. 2012;64(4):993–1004.

    CAS  PubMed  Google Scholar 

  50. Takahashi S, Saegusa J, Sendo S, Okano T, Akashi K, Irino Y, et al. Glutaminase 1 plays a key role in the cell growth of fibroblast-like synoviocytes in rheumatoid arthritis[J]. Arthritis Res Ther. 2017;19:1–10.

    Google Scholar 

  51. Ahn JK, Kim S, Hwang J, Kim J, Kim KH, Cha HS. GC/TOF-MS-based metabolomic profiling in cultured fibroblast-like synoviocytes from rheumatoid arthritis[J]. Jt Bone Spine. 2016;83(6):707–13.

    CAS  Google Scholar 

  52. Biniecka M, Canavan M, McGarry T, Gao W, McCormick J, Cregan S, et al. Dysregulated bioenergetics: a key regulator of joint inflammation[J]. Ann Rheum Dis. 2016;75(12):2192–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. de Oliveira PG, Farinon M, Sanchez-Lopez E, Miyamoto S, Guma M. Fibroblast-like synoviocytes glucose metabolism as a therapeutic target in rheumatoid arthritis[J]. Front Immunol. 2019;10:1743.

    PubMed  PubMed Central  Google Scholar 

  54. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, et al. Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis[J]. Proc Natl Acad Sci USA. 2007;104(49):19345–50.

    CAS  PubMed  Google Scholar 

  55. Wellen KE, Lu C, Mancuso A, Lemons JMS, Ryczko M, Dennis JW, et al. The hexosamine biosynthetic pathway couples growth factor-induced glutamine uptake to glucose metabolism[J]. Genes Dev. 2010;24(24):2784–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Warburg O, Wind F, Negelein E. The metabolism of tumors in the body[J]. J Gen Physiol. 1927;8(6):519–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wise DR, Thompson CB. Glutamine addiction: a new therapeutic target in cancer[J]. Trends Biochem Sci. 2010;35(8):427–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Schapira AHV. Mitochondrial disease[J]. Lancet. 2006;368(9529):70–82.

    CAS  PubMed  Google Scholar 

  59. Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease[J]. Nat Rev Genet. 2005;6(5):389–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Schumacker PT, Gillespie MN, Nakahira K, Choi AMK, Crouser ED, Piantadosi CA, et al. Mitochondria in lung biology and pathology: more than just a powerhouse[J]. Am J Physiol Lung Cell Mol Physiol. 2014;306(11):L962–L974974.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Weyand CM, Goronzy JJ. Immunometabolism in early and late stages of rheumatoid arthritis[J]. Nat Rev Rheumatol. 2017;13(5):1–11.

    Google Scholar 

  62. Weyand CM, Zeisbrich M, Goronzy JJ. Metabolic signatures of T-cells and macrophages in rheumatoid arthritis[J]. Curr Opin Immunol. 2017;46:112–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Fearon U, Canavan M, Biniecka M, Veale DJ. Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis[J]. Nat Rev Rheumatol. 2016;12(7):385–97.

    CAS  PubMed  Google Scholar 

  64. Rongvaux A. Innate immunity and tolerance toward mitochondria[J]. Mitochondrion. 2018;41:14–20.

    CAS  PubMed  Google Scholar 

  65. Filippin LI, Vercelino R, Marroni NP, Xavier RM. Redox signalling and the inflammatory response in rheumatoid arthritis[J]. Clin Exp Immunol. 2008;152(3):415–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Chan DC. Mitochondria: dynamic organelles in disease, aging, and development[J]. Cell. 2006;125(7):1241–52.

    CAS  PubMed  Google Scholar 

  67. Tilokani L, Nagashima S, Paupe V, Prudent J. Mitochondrial dynamics: overview of molecular mechanisms. Mitochondrial Dis. 2018;62:341–60.

    Google Scholar 

  68. Dorn GW II. Evolving concepts of mitochondrial dynamics. Annu Rev Physiol. 2019;81:1–17.

    CAS  PubMed  Google Scholar 

  69. Rambold AS, Pearce EL. Mitochondrial dynamics at the interface of immune cell metabolism and function[J]. Trends Immunol. 2018;39(1):6–18.

    CAS  PubMed  Google Scholar 

  70. Wang X, Chen Z, Fan X, Li W, Qu J, Dong C, et al. Inhibition of DNM1L and mitochondrial fission attenuates inflammatory response in fibroblast-like synoviocytes of rheumatoid arthritis[J]. J Cell Mol Med. 2020;24(2):1516–28.

    CAS  PubMed  Google Scholar 

  71. D'Souza AD, Parikh N, Kaech SM, Shadel GS. Convergence of multiple signaling pathways is required to coordinately up-regulate mtDNA and mitochondrial biogenesis during T cell activation[J]. Mitochondrion. 2007;7(6):374–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Buck MD, O'Sullivan D, Geltink RIK, Curtis JD, Chang C-H, Sanin DE, et al. Mitochondrial dynamics controls T cell fate through metabolic programming[J]. Cell. 2016;166(1):63–766.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. O'Sullivan D, van der Windt GJW, Huang SC-C, Curtis JD, Chang C-H, Buck MD, et al. Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development (vol 41, pg 75, 2014)[J]. Immunity. 2018;49(2):375–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. van der Windt GJW, Everts B, Chang C-H, Curtis JD, Freitas TC, Amiel E, et al. Mitochondrial respiratory capacity is a critical regulator of CD8(+) T cell memory development[J]. Immunity. 2012;36(1):68–78.

    PubMed  Google Scholar 

  75. Cogliati S, Frezza C, Soriano ME, Varanita T, Quintana-Cabrera R, Corrado M, et al. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency[J]. Cell. 2013;155(1):160–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Mishra P, Carelli V, Manfredi G, Chan DC. Proteolytic cleavage of opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation (vol 19, pg 630, 2014)[J]. Cell Metab. 2014;19(5):891–891.

    CAS  Google Scholar 

  77. Bird L. T CELLS mitochondrial shape shifters[J]. Nature Rev Immunol. 2016;16(7):403.

    Google Scholar 

  78. Acin-Perez R, Enriquez JA. The function of the respiratory supercomplexes: the plasticity model[J]. Biochimica Et Biophysica Acta-Bioenergetics. 2014;1837(4):444–50.

    CAS  Google Scholar 

  79. Yu TZ, Robotham JL, Yoon Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology[J]. Proc Natl Acad Sci USA. 2006;103(8):2653–8.

    CAS  PubMed  Google Scholar 

  80. Baixauli F, Acin-Perez R, Villarroya-Beltri C, Mazzeo C, Nunez-Andrade N, Gabande-Rodriguez E, et al. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses[J]. Cell Metab. 2015;22(3):485–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Garaude J, Acin-Perez R, Martinez-Cano S, Enamorado M, Ugolini M, Nistal-Villan E, et al. Mitochondrial respiratory-chain adaptations in macrophages contribute to antibacterial host defense[J]. Nat Immunol. 2016;17(9):1037–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Xia Y, Chen S, Zeng S, Zhao Y, Zhu C, Deng B, et al. Melatonin in macrophage biology: current understanding and future perspectives[J]. J Pineal Res. 2019;66(2):e12547.

    PubMed  Google Scholar 

  83. Narendra DP, Jin SM, Tanaka A, Suen D-F, Gautier CA, Shen J, et al. PINK1 is selectively stabilized on impaired mitochondria to activate parkin[J]. Plos Biol. 2010;8(1):e1000298.

    PubMed  PubMed Central  Google Scholar 

  84. Deretic V, Levine B. Autophagy balances inflammation in innate immunity[J]. Autophagy. 2018;14(2):243–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhu L, Wang H, Wu Y, He Z, Qin Y, Shen Q. The autophagy level is increased in the synovial tissues of patients with active rheumatoid arthritis and is correlated with disease severity[J]. Mediators Inflamm. 2017;76:23145.

    Google Scholar 

  86. Puleston DJ, Zhang H, Powell TJ, Lipina E, Sims S, Panse I, et al. Autophagy is a critical regulator of memory CD8(+) T cell formation[J]. Elife. 2014;3:e03706.

    PubMed Central  Google Scholar 

  87. Zhao Y, Guo Y, Jiang Y, Zhu X, Liu Y, Zhang X. Mitophagy regulates macrophage phenotype in diabetic nephropathy rats[J]. Biochem Biophys Res Commun. 2017;494(1–2):42–50.

    CAS  PubMed  Google Scholar 

  88. Esteban-Martinez L, Sierra-Filardi E, McGreal RS, Salazar-Roa M, Marino G, Seco E, et al. Programmed mitophagy is essential for the glycolytic switch during cell differentiation[J]. EMBO J. 2017;36(12):1688–706.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Angajala A, Lim S, Phillips JB, Kim J-H, Yates C, You Z, et al. Diverse roles of mitochondria in immune responses: novel insights into immuno-metabolism[J]. Front Immunol. 2018;9:1605.

    PubMed  PubMed Central  Google Scholar 

  90. Mills EL, O'Neill LA. Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal[J]. Eur J Immunol. 2016;46(1):13–211.

    CAS  PubMed  Google Scholar 

  91. Shapiro H, Lutaty A, Ariel A. Macrophages, meta-Inflammation, and Immuno-metabolism[J]. Sci World J. 2011;11:2509–29.

    Google Scholar 

  92. Beltran B, Mathur A, Duchen MR, Erusalimsky JD, Moncada S. The effect of nitric oxide on cell respiration: a key to understanding its role in cell survival or death[J]. Proc Natl Acad Sci USA. 2000;97(26):14602–7.

    CAS  PubMed  Google Scholar 

  93. Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LBA, et al. Cyclooxygenase in biology and disease[J]. Faseb J. 1998;12(12):1063–73.

    CAS  PubMed  Google Scholar 

  94. Moon J-S, Lee S, Park M-A, Siempos II, Haslip M, Lee PJ, et al. UCP2-induced fatty acid synthase promotes NLRP3 inflammasome activation during sepsis[J]. J Clin Investig. 2015;125(2):665–80.

    PubMed  Google Scholar 

  95. Mills EL, Ryan DG, Prag HA, Dikovskaya D, Menon D, Zaslona Z, et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1[J]. Nature. 2018;556(7699):113.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Michopoulos F, Karagianni N, Whalley NM, Firth MA, Nikolaou C, Wilson ID, et al. Targeted metabolic profiling of the Tg197 mouse model reveals itaconic acid as a marker of rheumatoid arthritis[J]. J Proteome Res. 2016;15(12):4579–90.

    CAS  PubMed  Google Scholar 

  97. Lampropoulou V, Sergushichev A, Bambouskova M, Nair S, Vincent EE, Loginicheva E, et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation[J]. Cell Metab. 2016;24(1):158–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Murphy MP, O'Neill LAJ. Krebs cycle reimagined: the emerging roles of succinate and itaconate as signal transducers[J]. Cell. 2018;174(4):780–4.

    CAS  PubMed  Google Scholar 

  99. Mills E, O'Neill LAJ. Succinate: a metabolic signal inflammation[J]. Trends Cell Biol. 2014;24(5):313–20.

    CAS  PubMed  Google Scholar 

  100. Mills EL, Kelly B, Logan A, Costa ASH, Varma M, Bryant CE, et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages[J]. Cell. 2016;167(2):457.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Saraiva AL, Veras FP, Peres RS, Talbot J, de Lima KA, Luiz JP, et al. Succinate receptor deficiency attenuates arthritis by reducing dendritic cell traffic and expansion of T(h)17 cells in the lymph nodes[J]. Faseb J. 2018;32(12):6550–8.

    CAS  Google Scholar 

  102. Yadav SK, Soin D, Ito K, Dhib-Jalbut S. Insight into the mechanism of action of dimethyl fumarate in multiple sclerosis[J]. J Mol Med (Berlin, Germany). 2019;97(4):463–72.

    CAS  Google Scholar 

  103. Yamaguchi Y, Kanzaki H, Katsumata Y, Itohiya K, Fukaya S, Miyamoto Y, et al. Dimethyl fumarate inhibits osteoclasts via attenuation of reactive oxygen species signalling by augmented antioxidation[J]. J Cell Mol Med. 2018;22(2):1138–47.

    CAS  PubMed  Google Scholar 

  104. Nishioku T, Kawamoto M, Okizono R, Sakai E, Okamoto K, Tsukuba T. Dimethyl fumarate prevents osteoclastogenesis by decreasing NFATc1 expression, inhibiting of erk and p38 MAPK phosphorylation, and suppressing of HMGB1 release[J]. Biochem Biophys Res Commun. 2020. https://doi.org/10.1016/j.bbrc.2020.05.088.

    Article  PubMed  Google Scholar 

  105. Kaminski MM, Sauer SW, Kaminski M, Opp S, Ruppert T, Grigaravicius P, et al. T cell activation is driven by an ADP-dependent glucokinase linking enhanced glycolysis with mitochondrial reactive oxygen species generation[J]. Cell Rep. 2012;2(5):1300–15.

    CAS  PubMed  Google Scholar 

  106. Mehta MM, Weinberg SE, Chandel NS. Mitochondrial control of immunity: beyond ATP[J]. Nat Rev Immunol. 2017;17(10):608–20.

    CAS  PubMed  Google Scholar 

  107. Gerriets VA, Kishton RJ, Nichols AG, Macintyre AN, Inoue M, Ilkayeva O, et al. Metabolic programming and PDHK1 control CD4(+) T cell subsets and inflammation[J]. J Clin Investig. 2015;125(1):194–207.

    PubMed  Google Scholar 

  108. Balmer ML, Ma EH, Bantug GR, Grahlert J, Pfister S, Glatter T, et al. Memory CD8(+) T cells require increased concentrations of acetate induced by stress for optimal function[J]. Immunity. 2016;44(6):1312–24.

    CAS  PubMed  Google Scholar 

  109. Gubser PM, Bantug GR, Razik L, Fischer M, Dimeloe S, Hoenger G, et al. Rapid effector function of memory CD8(+) T cells requires an immediate-early glycolytic switch[J]. Nature Immunol. 2013;14(10):1064.

    CAS  Google Scholar 

  110. Okayyaocahtatyat K. Evaluation of tocilizumab therapy in patients with rheumatoid arthritis based on FDG-PET/CT[J]. BMC Musculoskelet Disord. 2014;15:393.

    Google Scholar 

  111. Choi YH. ROS-mediated activation of AMPK plays a critical role in sulforaphane-induced apoptosis and mitotic arrest in AGS human gastric cancer cells[J]. Gen Physiol Biophys. 2018;37(2):129–40.

    CAS  PubMed  Google Scholar 

  112. Jeong HW, Hsu KC, Lee J-W, Ham M, Huh JY, Shin HJ, et al. Berberine suppresses proinflammatory responses through AMPK activation in macrophages[J]. Am J Physiol Endocrinol Metab. 2009;296(4):E955–E964964.

    CAS  PubMed  Google Scholar 

  113. Liu-Bryan R. Inflammation and intracellular metabolism: new targets in OA[J]. Osteoarthr Cartil. 2015;23(11):1835–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Liu TF, Brown CM, El Gazzar M, McPhail L, Millet P, Rao A, et al. Fueling the flame: bioenergy couples metabolism and inflammation[J]. J Leukoc Biol. 2012;92(3):499–507.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Gai L, Chu L, Xia R, Chen Q, Sun X. Barbaloin attenuates mucosal damage in experimental models of rat colitis by regulating inflammation and the AMPK signaling pathway[J]. Med Sci Monit. 2019;25:10045–56.

    PubMed  PubMed Central  Google Scholar 

  116. Sanadgol N, Barati M, Houshmand F, Hassani S, Clarner T, Shahlaei M, et al. Metformin accelerates myelin recovery and ameliorates behavioral deficits in the animal model of multiple sclerosis via adjustment of AMPK/Nrf2/mTOR signaling and maintenance of endogenous oligodendrogenesis during brain self-repairing period[J]. Pharmacol Rep. 2019;18:1–18.

    Google Scholar 

  117. Samimi Z, Kardideh B, Zafari P, Bahrehmand F, Roghani SA, Taghadosi M. The impaired gene expression of adenosine monophosphate-activated kinase (AMPK), a key metabolic enzyme in leukocytes of newly diagnosed rheumatoid arthritis patients[J]. Mol Biol Rep. 2019;46(6):6353–60.

    CAS  PubMed  Google Scholar 

  118. Wen Z, Jin K, Shen Y, Yang Z, Li Y, Wu B, et al. N-myristoyltransferase deficiency impairs activation of kinase AMPK and promotes synovial tissue inflammation[J]. Nature Immunol. 2019;20(3):313.

    CAS  Google Scholar 

  119. Jiang S, Park DW, Stigler WS, Creighton J, Ravi S, Darley-Usmar V, et al. Mitochondria and AMP-activated protein kinase-dependent mechanism of efferocytosis[J]. J Biol Chem. 2013;288(36):26013–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Carroll KC, Viollet B, Suttles J. AMPKalpha1 deficiency amplifies proinflammatory myeloid APC activity and CD40 signaling[J]. J Leukoc Biol. 2013;94(6):1113–21.

    PubMed  PubMed Central  Google Scholar 

  121. Guma M, Wang Y, Viollet B, Ru L-B. AMPK activation by A-769662 controls IL-6 expression in inflammatory arthritis[J]. PLoS ONE. 2015;10(10):e0140452.

    PubMed  PubMed Central  Google Scholar 

  122. Kang KY, Kim YK, Yi H, Kim J, Jung H-R, Kim IJ, et al. Metformin downregulates Th17 cells differentiation and attenuates murine autoimmune arthritis[J]. Int Immunopharmacol. 2013;16(1):85–92.

    CAS  PubMed  Google Scholar 

  123. Yan H, Zhou H-F, Hu Y, Pham CTN. Suppression of experimental arthritis through AMP-activated protein kinase activation and autophagy modulation[J]. J Rheum Dis Treat. 2015;1(1):5–5.

    PubMed  PubMed Central  Google Scholar 

  124. Zhou J, Yu Y, Yang X, Wang Y, Song Y, Wang Q, et al. Berberine attenuates arthritis in adjuvant-induced arthritic rats associated with regulating polarization of macrophages through AMPK/NF-кB pathway[J]. Eur J Pharmacol. 2019;852:179–88.

    CAS  PubMed  Google Scholar 

  125. Kim J, Guan K-L. mTOR as a central hub of nutrient signalling and cell growth[J]. Nat Cell Biol. 2019;21(1):63–71.

    CAS  PubMed  Google Scholar 

  126. Suto T, Karonitsch T. The immunobiology of mTOR in autoimmunity[J]. J Autoimmun. 2019;10:2373.

    Google Scholar 

  127. Duevel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1[J]. Mol Cell. 2010;39(2):171–83.

    CAS  Google Scholar 

  128. Corcoran SE, O'Neill LAJ. HIF1 alpha and metabolic reprogramming in inflammation[J]. J Clin Investig. 2016;126(10):3699–707.

    PubMed  Google Scholar 

  129. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4(+) T cell subsets[J]. J Immunol. 2011;186(6):3299–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Son HJ, Lee J, Lee SY, Kim EK, Park MJ, Kim KW, et al. Metformin attenuates experimental autoimmune arthritis through reciprocal regulation of Th17/Treg balance and osteoclastogenesis[J]. Mediators Inflamm. 2014;2014:973986.

    PubMed  PubMed Central  Google Scholar 

  131. Karonitsch T, Kandasamy RK, Kartnig F, Herdy B, Dalwigk K, Niederreiter B, et al. mTOR senses environmental cues to shape the fibroblast-like synoviocyte response to inflammation[J]. Cell Rep. 2018;23(7):2157–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Miao C-G, Xiong Y-Y, Qin M-S, Chen H, Chang J. Experimental Study on Paeoniflorin Inhibiting mTOR Signaling Pathway in Adjuvant Arthritis Rats[J]. Sichuan da xue xue bao. Yi xue ban = J Sichuan Univ Med Sci. 2018;49(4):535–9.

    Google Scholar 

  133. Deng HM, Zheng M, Hu ZL, Zeng XP, Kuang NZ, Fu YY. Effects of daphnetin on the autophagy signaling pathway of fibroblast-like synoviocytes in rats with collagen-induced arthritis (CIA) induced by TNF-alpha[J]. Cytokine. 2020;127:154952.

    CAS  PubMed  Google Scholar 

  134. Jung YJ, Isaacs JS, Lee S, Trepel J, Neckers L. IL-1beta-mediated up-regulation of HIF-1alpha via an NFkappaB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis[J]. FASEB. 2003;17(14):2115–7.

    CAS  Google Scholar 

  135. Zhou J, Schmid T, Brune B. Tumor necrosis factor-alpha causes accumulation of a ubiquitinated form of hypoxia inducible factor-1alpha through a nuclear factor-kappaB-dependent pathway[J]. Mol Biol Cell. 2003;14(6):2216–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Bruning U, Fitzpatrick SF, Frank T, Birtwistle M, Taylor CT, Cheong A. NFkappaB and HIF display synergistic behaviour during hypoxic inflammation[J]. Cell Mol Life Sci CMLS. 2012;69(8):1319–29.

    CAS  PubMed  Google Scholar 

  137. Remels AHV, Gosker HR, Verhees KJP, Langen RCJ, Schols AMWJ. TNF-alpha-Induced NF-kappa B activation stimulates skeletal muscle glycolytic metabolism through activation of HIF-1 alpha[J]. Endocrinology. 2015;156(5):1770–811.

    CAS  PubMed  Google Scholar 

  138. Park SY, Lee SW, Kim HY, Lee WS, Hong KW, Kim CD. HMGB1 induces angiogenesis in rheumatoid arthritis via HIF-1alpha activation[J]. Eur J Immunol. 2015;45(4):1216–27.

    CAS  PubMed  Google Scholar 

  139. Oshea JJ. Jaks, STATs, cytokine signal transduction, and immunoregulation: are we there yet? (vol 7, pg 1, 1997)[J]. Immunity. 1997;7(3):U9–U9.

    Google Scholar 

  140. Camporeale A, Demaria M, Monteleone E, Giorgi C, Wieckowski MR, Pinton P, et al. STAT3 activities and energy metabolism: dangerous liaisons[J]. Cancers. 2014;6(3):1579–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Gao W, McCormick J, Connolly M, Balogh E, Veale DJ, Fearon U. Hypoxia and STAT3 signalling interactions regulate pro-inflammatory pathways in rheumatoid arthritis[J]. Ann Rheum Dis. 2015;74(6):1275–83.

    CAS  PubMed  Google Scholar 

  142. McGarry T, Orr C, Wade S, Biniecka M, Wade S, Gallagher L, et al. JAK/STAT blockade alters synovial bioenergetics, mitochondrial function, and proinflammatory mediators in rheumatoid arthritis[J]. Arthritis Rheumatol. 2018;70(12):1959–70.

    CAS  PubMed  Google Scholar 

  143. Speirs C, Williams JJL, Riches K, Salt IP, Palmer TM. Linking energy sensing to suppression of JAK-STAT signalling: a potential route for repurposing AMPK activators?[J]. Pharmacol Res. 2018;128:88–100.

    PubMed  Google Scholar 

  144. Lai EC. Keeping a good pathway down: transcriptional repression of Notch pathway target genes by CSL proteins[J]. EMBO Rep. 2002;3(9):840–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Iso T, Kedes L, Hamamori Y. HES and HERP families: multiple effectors of the Notch signaling pathway[J]. J Cell Physiol. 2003;194(3):237–55.

    CAS  PubMed  Google Scholar 

  146. Iso T, Hamamori Y, Kedes L. Notch signaling in vascular development[J]. Arterioscler Thromb Vasc Biol. 2003;23(4):543–53.

    CAS  PubMed  Google Scholar 

  147. Gridley T. Notch signaling during vascular development[J]. Proc Natl Acad Sci USA. 2001;98(10):5377–8.

    CAS  PubMed  Google Scholar 

  148. Ho J, Uyttendaele H, Kitajewski J, Rossant J. A role for Notch signaling in vascular remodeling during endothelial development[J]. Pediatr Res. 2000;47(4):70A–.

    Google Scholar 

  149. Gao W, Sweeney C, Connolly M, Kennedy A, Chin Teck N, McCormick J, et al. Notch-1 mediates hypoxia-induced angiogenesis in rheumatoid arthritis[J]. Arthritis Rheum. 2012;64(7):2104–13.

    CAS  PubMed  Google Scholar 

  150. Weinstein BM, Lawson ND. Arteries, veins, notch, and VEGF[J]. Cold Spring Harbor Symp Quantitative Biol. 2002;67:155–62.

    CAS  Google Scholar 

  151. Karlsson C, Jonsson M, Asp J, Brantsing C, Kageyama R, Lindahl A. Notch and HES5 are regulated during human cartilage differentiation[J]. Cell Tissue Res. 2007;327(3):539–51.

    CAS  PubMed  Google Scholar 

  152. Diez H, Fischer A, Winkler A, Hu C-J, Hatzopoulos AK, Breier G, et al. Hypoxia-mediated activation of Dll4-Notch-Hey2 signaling in endothelial progenitor cells and adoption of arterial cell fate[J]. Exp Cell Res. 2007;313(1):1–9.

    CAS  PubMed  Google Scholar 

  153. Okano T, Saegusa J, Takahashi S, Ueda Y, Morinobu A. Immunometabolism in rheumatoid arthritis[J]. Immunol Med. 2018;41(3):89–97.

    PubMed  Google Scholar 

  154. Weyand CM, Goronzy JJ. Immunometabolism in the development of rheumatoid arthritis[J]. Immunol Rev. 2020;294(1):177–87.

    CAS  PubMed  Google Scholar 

  155. Shervington L, Darekar A, Shaikh M, Mathews R, Shervington A. Identifying reliable diagnostic/predictive biomarkers for rheumatoid arthritis[J]. Biomark Insights. 2018;13:1177271918801005.

    PubMed  PubMed Central  Google Scholar 

  156. Garcia-Carbonell R, Divakaruni AS, Lodi A, Vicente-Suarez I, Saha A, Cheroutre H, et al. Critical role of glucose metabolism in rheumatoid arthritis fibroblast-like synoviocytes[J]. Arthritis Rheumatol. 2016;68(7):1614–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Hoshino A, Hirst JA, Fujii H. Regulation of cell proliferation by interleukin-3-induced nuclear translocation of pyruvate kinase[J]. J Biol Chem. 2007;282(24):17706–11.

    CAS  PubMed  Google Scholar 

  158. Demaria M, Poli V. PKM2, STAT3 and HIF-1alpha: the Warburg's vicious circle[J]. Jak-Stat. 2012;1(3):194–6.

    PubMed  PubMed Central  Google Scholar 

  159. Zou Y, Zeng S, Huang M, Qiu Q, Xiao Y, Shi M, et al. Inhibition of 6-phosphofructo-2-kinase suppresses fibroblast-like synoviocytes-mediated synovial inflammation and joint destruction in rheumatoid arthritis[J]. Br J Pharmacol. 2017;174(9):893–908.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Carames B, Hasegawa A, Taniguchi N, Miyaki S, Blanco FJ, Lotz M. Autophagy activation by rapamycin reduces severity of experimental osteoarthritis[J]. Ann Rheum Dis. 2012;71(4):575–81.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (81703529), Anhui Province Postdoctoral Research Activity Funding Project (2018B251), the Innovation and Entrepreneurship Project Plan of National Undergraduate Support Project of China (201910367036), and Innovative Drug Innovation Team of Bengbu Medical College (BYKC201904).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Ww., Yu, Y., Zong, Sy. et al. Metabolic reprogramming as a key regulator in the pathogenesis of rheumatoid arthritis. Inflamm. Res. 69, 1087–1101 (2020). https://doi.org/10.1007/s00011-020-01391-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-020-01391-5

Keywords

Navigation