Skip to main content

Advertisement

Log in

The immunological function of CD52 and its targeting in organ transplantation

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Introduction

CD52 (Campath-1 antigen), a glycoprotein of 12 amino acids anchored to glycosylphosphatidylinositol, is widely expressed on the cell surface of immune cells, such as mature lymphocytes, natural killer cells (NK), eosinophils, neutrophils, monocytes/macrophages, and dendritic cells (DCs). The anti-CD52 mAb, alemtuzumab, was used widely in clinics for the treatment of patients such as organ transplantation. In the present manuscript, we will briefly summarize the immunological function of CD52 and discuss the application of anti-CD52 mAb in transplantation settings.

Findings

We reviewed studies published until July 2016 to explore the role of CD52 in immune cell function and its implication in organ transplantation. We showed that ligation of cell surface CD52 molecules may offer costimulatory signals for T-cell activation and proliferation. However, soluble CD52 molecules will interact with the inhibitory sialic acid-binding immunoglobulin-like lectin 10 (Siglec10) to significantly inhibit T cell proliferation and activation. Although the physiological and pathological significances of CD52 molecules are still poorly understood, the anti-CD52 mAb, alemtuzumab, was used widely for the treatment of patients with chronic lymphocytic leukemia, autoimmune diseases as well as cell and organ transplantation in clinics.

Conclusion

Studies clearly showed that CD52 can modulate T-cell activation either by its intracellular signal pathways or by the interaction of soluble CD52 and Siglec-10 expressing on T cells. However, the regulatory functions of CD52 on other immune cell subpopulations in organ transplantation require to be studied in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Treumann A, et al. Primary structure of CD52. J Biol Chem. 1995;270(11):6088–99.

    Article  CAS  PubMed  Google Scholar 

  2. Xia MQ, et al. Structure of the CAMPATH-1 antigen, a glycosylphosphatidylinositol-anchored glycoprotein which is an exceptionally good target for complement lysis. Biochem J. 1993;293(Pt 3):633–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cheetham GM, et al. Crystal structures of a rat anti-CD52 (CAMPATH-1) therapeutic antibody Fab fragment and its humanized counterpart. J Mol Biol. 1998;284(1):85–99.

    Article  CAS  PubMed  Google Scholar 

  4. Kirchhoff C, et al. A major mRNA of the human epididymal principal cells, HE5, encodes the leucocyte differentiation CDw52 antigen peptide backbone. Mol Reprod Dev. 1993;34(1):8–15.

    Article  CAS  PubMed  Google Scholar 

  5. Buggins AG, et al. Peripheral blood but not tissue dendritic cells express CD52 and are depleted by treatment with alemtuzumab. Blood. 2002;100(5):1715–20.

    CAS  PubMed  Google Scholar 

  6. Ratzinger G, et al. Differential CD52 expression by distinct myeloid dendritic cell subsets: implications for alemtuzumab activity at the level of antigen presentation in allogeneic graft-host interactions in transplantation. Blood. 2003;101(4):1422–9.

    Article  CAS  PubMed  Google Scholar 

  7. Hale G. The CD52 antigen and development of the CAMPATH antibodies. CytoTherapy. 2001;3(3):137–43.

    Article  CAS  PubMed  Google Scholar 

  8. Ravandi F. and S. O’Brien, Alemtuzumab. Expert Rev Anticancer Ther. 2005;5(1):39–51.

    Article  CAS  PubMed  Google Scholar 

  9. Cohen JA, et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet. 2012;380(9856):1819–28.

    Article  CAS  PubMed  Google Scholar 

  10. Garnock-Jones KP. Alemtuzumab: a review of its use in patients with relapsing multiple sclerosis. Drugs. 2014;74(4):489–504.

    Article  CAS  PubMed  Google Scholar 

  11. Fox EJ, et al. Alemtuzumab improves neurological functional systems in treatment-naive relapsing-remitting multiple sclerosis patients. J Neurol Sci. 2016;363:188–94.

    Article  CAS  PubMed  Google Scholar 

  12. Hui YM, et al. Use of non-irradiated blood components in Campath (alemtuzumab)-treated renal transplant patients. Transfus Med. 2016;26(2):138–46.

    Article  CAS  PubMed  Google Scholar 

  13. Schub N, et al. Therapy of steroid-refractory acute GVHD with CD52 antibody alemtuzumab is effective. Bone Marrow Transplant. 2011;46(1):143–7.

    Article  CAS  PubMed  Google Scholar 

  14. Li SW, et al. All-trans-retinoic acid induces CD52 expression in acute promyelocytic leukemia. Blood. 2003;101(5):1977–80.

    Article  CAS  PubMed  Google Scholar 

  15. Gilleece MH, Dexter TM. Effect of Campath-1H antibody on human hematopoietic progenitors in vitro. Blood. 1993;82(3):807–12.

    CAS  PubMed  Google Scholar 

  16. Elsner J, et al. Surface and mRNA expression of the CD52 antigen by human eosinophils but not by neutrophils. Blood. 1996;88(12):4684–93.

    CAS  PubMed  Google Scholar 

  17. Knechtle SJ, et al. Campath-1H in renal transplantation: The University of Wisconsin experience. Surgery. 2004;136(4):754–60.

    Article  PubMed  Google Scholar 

  18. Ambrose LR, Morel AS, Warrens AN. Neutrophils express CD52 and exhibit complement-mediated lysis in the presence of alemtuzumab. Blood. 2009;114(14):3052–5.

    Article  CAS  PubMed  Google Scholar 

  19. Hu Y, et al. Investigation of the mechanism of action of alemtuzumab in a human CD52 transgenic mouse model. Immunology. 2009;128(2):260–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Olweus J, Lund-Johansen F, Terstappen LW. Expression of cell surface markers during differentiation of CD34+, CD38-/lo fetal and adult bone marrow cells. Immunomethods. 1994;5(3):179–88.

    Article  CAS  PubMed  Google Scholar 

  21. Williams RJ, et al. Impact on T-cell depletion and CD34+ cell recovery using humanised CD52 monoclonal antibody (CAMPATH-1H) in BM and PSBC collections; comparison with CAMPATH-1M and CAMPATH-1G. CytoTherapy. 2000;2(1):5–14.

    Article  CAS  PubMed  Google Scholar 

  22. Xia MQ, et al. Characterization of the CAMPATH-1 (CDw52) antigen: biochemical analysis and cDNA cloning reveal an unusually small peptide backbone. Eur J Immunol. 1991;21(7):1677–84.

    Article  CAS  PubMed  Google Scholar 

  23. Bandala-Sanchez E, et al. T cell regulation mediated by interaction of soluble CD52 with the inhibitory receptor Siglec-10. Nat Immunol. 2013;14(7):741–8.

    Article  CAS  PubMed  Google Scholar 

  24. Rowan W, et al. Cross-linking of the CAMPATH-1 antigen (CD52) mediates growth inhibition in human B- and T-lymphoma cell lines, and subsequent emergence of CD52-deficient cells. Immunology. 1998;95(3):427–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nuckel H, et al. Alemtuzumab induces enhanced apoptosis in vitro in B-cells from patients with chronic lymphocytic leukemia by antibody-dependent cellular cytotoxicity. Eur J Pharmacol. 2005;514(2–3):217–24.

    Article  PubMed  CAS  Google Scholar 

  26. Mone AP, et al. Alemtuzumab induces caspase-independent cell death in human chronic lymphocytic leukemia cells through a lipid raft-dependent mechanism. Leukemia. 2006;20(2):272–9.

    Article  CAS  PubMed  Google Scholar 

  27. Smolewski P, et al. Additive cytotoxic effect of bortezomib in combination with anti-CD20 or anti-CD52 monoclonal antibodies on chronic lymphocytic leukemia cells. Leuk Res. 2006;30(12):1521–9.

    Article  CAS  PubMed  Google Scholar 

  28. Nguyen TH, et al. Alemtuzumab induction of intracellular signaling and apoptosis in malignant B lymphocytes. Leuk Lymphoma. 2012;53(4):699–709.

    Article  CAS  PubMed  Google Scholar 

  29. Rowan WC, et al. Cross-linking of the CAMPATH-1 antigen (CD52) triggers activation of normal human T lymphocytes. Int Immunol. 1995;7(1):69–77.

    Article  CAS  PubMed  Google Scholar 

  30. Hederer RA, et al. The CD45 tyrosine phosphatase regulates Campath-1H (CD52)-induced TCR-dependent signal transduction in human T cells. Int Immunol. 2000;12(4):505–16.

    Article  CAS  PubMed  Google Scholar 

  31. Masuyama J, et al. A novel costimulation pathway via the 4C8 antigen for the induction of CD4 + regulatory T cells. J Immunol. 2002;169(7):3710–6.

    Article  CAS  PubMed  Google Scholar 

  32. Masuyama J, et al. Characterization of the 4C8 antigen involved in transendothelial migration of CD26(hi) T cells after tight adhesion to human umbilical vein endothelial cell monolayers. J Exp Med. 1999;189(6):979–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Watanabe T, et al. CD52 is a novel costimulatory molecule for induction of CD4+ regulatory T cells. Clin Immunol. 2006;120(3):247–59.

    Article  CAS  PubMed  Google Scholar 

  34. Pant AB, et al. Alteration of CD39+ Foxp3+ CD4 T cell and cytokine levels in EAE/MS following anti-CD52 treatment. J Neuroimmunol. 2017;303:22–30.

    Article  CAS  PubMed  Google Scholar 

  35. Shah A, et al. CD52 ligation induces CD4 and CD8 down modulation in vivo and in vitro. Transpl Int. 2006;19(9):749–58.

    Article  CAS  PubMed  Google Scholar 

  36. Isaacs JD, et al. A therapeutic human IgG4 monoclonal antibody that depletes target cells in humans. Clin Exp Immunol. 1996;106(3):427–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Riechmann L, et al. Reshaping human antibodies for therapy. Nature. 1988;332(6162):323–7.

    Article  CAS  PubMed  Google Scholar 

  38. Lowenstein H, et al. Different mechanisms of Campath-1H-mediated depletion for CD4 and CD8 T cells in peripheral blood. Transpl Int. 2006;19(11):927–36.

    Article  CAS  PubMed  Google Scholar 

  39. Stauch D, et al. Targeting of natural killer cells by rabbit antithymocyte globulin and campath-1H: similar effects independent of specificity. PLoS One. 2009;4(3):e4709.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Shen B, et al. Impact of antimouse CD52 monoclonal antibody on Graft’s gamma delta intraepithelial lymphocytes after orthotopic small bowel transplantation in Mice. Transplantation. 2013;95(5):663–70.

    Article  CAS  PubMed  Google Scholar 

  41. Rodig SJ, et al. Heterogeneous CD52 expression among hematologic neoplasms: implications for the use of alemtuzumab (CAMPATH-1H). Clin Cancer Res. 2006;12(23):7174–9.

    Article  CAS  PubMed  Google Scholar 

  42. Dearden CE, Matutes E. Alemtuzumab in T-cell lymphoproliferative disorders. Best Practice Research Clinical Haematology. 2006;19(4):795–810.

    Article  CAS  PubMed  Google Scholar 

  43. Cabrera R, et al. Using an immune functional assay to differentiate acute cellular rejection from recurrent hepatitis c in liver transplant patients. Liver Transplant. 2009;15(2):216–22.

    Article  Google Scholar 

  44. Magliocca JF, Knechtle SJ. The evolving role of alemtuzumab (Campath-1H) for immunosuppressive therapy in organ transplantation. Transplant Int. 2006;19(9):705–14.

    Article  CAS  Google Scholar 

  45. Bouvy AP, et al. Alemtuzumab as antirejection therapy: T Cell repopulation and cytokine responsiveness. Transplant Direct. 2016;2(6):e83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang X, et al. Differential reconstitution of T cell subsets following immunodepleting treatment with alemtuzumab (Anti-CD52 Monoclonal Antibody) in patients with relapsing-remitting multiple sclerosis. J Immunol. 2013;191(12):5867–74.

    Article  CAS  PubMed  Google Scholar 

  47. Jones JL, et al. Improvement in disability after alemtuzumab treatment of multiple sclerosis is associated with neuroprotective autoimmunity. Brain. 2010;133:2232–47.

    Article  PubMed  Google Scholar 

  48. Chakraverty R, et al. Limiting transplantation-related mortality following unrelated donor stem cell transplantation by using a nonmyeloablative conditioning regimen. Blood. 2002;99(3):1071–8.

    Article  CAS  PubMed  Google Scholar 

  49. Kottaridis PD, et al. In vivo CAMPATH-1H prevents graft-versus-host disease following nonmyeloablative stem cell transplantation. Blood. 2000;96(7):2419–25.

    CAS  PubMed  Google Scholar 

  50. Kirsch BM, et al. Alemtuzumab (Campath-1H) induction therapy and dendritic cells: Impact on peripheral dendritic cell repertoire in renal allograft recipients. Transpl Immunol. 2006;16(3–4):254–7.

    Article  CAS  PubMed  Google Scholar 

  51. Klangsinsirikul P, et al. Campath-1G causes rapid depletion of circulating host dendritic cells (DCs) before allogeneic transplantation but does not delay donor DC reconstitution. Blood. 2002;99(7):2586–91.

    Article  CAS  PubMed  Google Scholar 

  52. Siders WM, et al. Involvement of neutrophils and natural killer cells in the anti-tumor activity of alemtuzumab in xenograft tumor models. Leuk Lymphoma. 2010;51(7):1293–304.

    Article  CAS  PubMed  Google Scholar 

  53. Gorin NC, et al. Administration of alemtuzumab and G-CSF to adults with relapsed or refractory acute lymphoblastic leukemia: results of a phase II study. Eur J Haematol. 2013;91(4):315–21.

    CAS  PubMed  Google Scholar 

  54. Neerukonda AR, et al. refractory adult primary autoimmune neutropenia that responded to Alemtuzumab. Intern Med. 2016;55(12):1667–70.

    Article  PubMed  Google Scholar 

  55. Masuyama J, et al. Ex vivo expansion of natural killer cells from human peripheral blood mononuclear cells co-stimulated with anti-CD3 and anti-CD52 monoclonal antibodies. CytoTherapy. 2016;18(1):80–90.

    Article  CAS  PubMed  Google Scholar 

  56. Naparstek E, et al. Engraftment of marrow allografts treated with Campath-1 monoclonal antibodies. Exp Hematol. 1999;27(7):1210–8.

    Article  CAS  PubMed  Google Scholar 

  57. Dyer MJ, et al. Effects of CAMPATH-1 antibodies in vivo in patients with lymphoid malignancies: influence of antibody isotype. Blood. 1989;73(6):1431–9.

    CAS  PubMed  Google Scholar 

  58. Hale G, et al. Remission induction in non-Hodgkin lymphoma with reshaped human monoclonal antibody CAMPATH-1H. The Lancet. 1988;2(8625):1394–9.

    Article  CAS  Google Scholar 

  59. Ciancio G, et al. The use of campath-1H as induction therapy in renal transplantation: Preliminary results. Transplantation. 2004;78(3):426–33.

    Article  CAS  PubMed  Google Scholar 

  60. Kirk AD, et al. Results from a human renal allograft tolerance trial evaluating the humanized CD52-specific monoclonal antibody alemtuzumab (Campath-1H). Transplantation. 2003;76(1):120–9.

    Article  CAS  PubMed  Google Scholar 

  61. Bloom DD, et al. T-lymphocyte alloresponses of Campath-1H-treated kidney transplant patients. Transplantation. 2006;81(1):81–7.

    Article  PubMed  Google Scholar 

  62. Knechtle SJ, et al. Campath-1H induction plus rapamycin monotherapy for renal transplantation: results of a pilot study. Am J Transplant. 2003;3(6):722–30.

    Article  CAS  PubMed  Google Scholar 

  63. Shapiro, R., et al. Kidney transplantation under minimal immunosuppression after pretransplant lymphoid depletion with Thymoglobulin or Campath. J Am Coll Surg, 2005;200(4): 505–15; quiz A59–61.

    Article  Google Scholar 

  64. Hale G, et al. Improving the outcome of bone marrow transplantation by using CD52 monoclonal antibodies to prevent graft-versus-host disease and graft rejection. Blood. 1998;92(12):4581–90.

    CAS  PubMed  Google Scholar 

  65. Hale G, et al. CD52 antibodies for prevention of graft-versus-host disease and graft rejection following transplantation of allogeneic peripheral blood stem cells. Bone Marrow Transplant. 2000;26(1):69–76.

    Article  CAS  PubMed  Google Scholar 

  66. Hale G, et al. Pilot study of CAMPATH-1, a rat monoclonal antibody that fixes human complement, as an immunosuppressant in organ transplantation. Transplantation. 1986;42(3):308–11.

    Article  CAS  PubMed  Google Scholar 

  67. Friend PJ, et al. Campath-1M–prophylactic use after kidney transplantation. A randomized controlled clinical trial. Transplantation. 1989;48(2):248–53.

    Article  CAS  PubMed  Google Scholar 

  68. Friend PJ, et al. Reversal of allograft rejection using the monoclonal antibody, Campath-1G. Transplant Proc. 1991;23(4):2253–4.

    CAS  PubMed  Google Scholar 

  69. Isaacs JD, et al. CAMPATH-1H in rheumatoid arthritis–an intravenous dose-ranging study. Br J Rheumatol. 1996;35(3):231–40.

    Article  CAS  PubMed  Google Scholar 

  70. Dick AD, et al. Campath-1H therapy in refractory ocular inflammatory disease. Br J Ophthalmol. 2000;84(1):107–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cheung WW, et al. Alemtuzumab induced complete remission of autoimmune hemolytic anemia refractory to corticosteroids, splenectomy and rituximab. Haematologica. 2006;91(5 Suppl):ECR13.

    PubMed  Google Scholar 

  72. Morales J, et al. Alemtuzumab induction in kidney transplantation: clinical results and impact on T-regulatory cells. Transplant Proc. 2008;40(9):3223–8.

    Article  CAS  PubMed  Google Scholar 

  73. Watson CJ, et al. Alemtuzumab (CAMPATH 1 H) induction therapy in cadaveric kidney transplantation–efficacy and safety at five years. Am J Transplant. 2005;5(6):1347–53.

    Article  CAS  PubMed  Google Scholar 

  74. Coles AJ, et al. Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med. 2008;359(17):1786–801.

    Article  PubMed  Google Scholar 

  75. Bartosh SM, Knechtle SJ, Sollinger HW. Campath-1H use in pediatric renal transplantation. Am J Transplant. 2005;5(6):1569–73.

    Article  CAS  PubMed  Google Scholar 

  76. Nankivell BJ, et al. The natural history of chronic allograft nephropathy. N Engl J Med. 2003;349(24):2326–33.

    Article  CAS  PubMed  Google Scholar 

  77. Viklicky O, et al. Sequential targeting of CD52 and TNF allows early minimization therapy in kidney transplantation: from a biomarker to targeting in a proof-of-concept trial. PLoS One. 2017;12(1):e0169624.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Meier-Kriesche HU, Schold JD, Kaplan B. Long-term renal allograft survival: Have we made significant progress or is it time to rethink our analytic and therapeutic strategies? Am J Transplant. 2004;4(8):1289–95.

    Article  PubMed  Google Scholar 

  79. Meier-Kriesche HU, et al. Lack of improvement in renal allograft survival despite a marked decrease in acute rejection rates over the most recent era. Am J Transplant. 2004;4(3):378–83.

    Article  PubMed  Google Scholar 

  80. Kwun J, et al. Patterns of De Novo Allo B cells and antibody formation in chronic cardiac allograft rejection after alemtuzumab treatment. Am J Transplant. 2012;12(10):2641–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gareau A, et al. Contribution of B cells and antibody to cardiac allograft vasculopathy. Transplantation. 2009;88(4):470–7.

    Article  CAS  PubMed  Google Scholar 

  82. Kwun J, et al. The role of B cells in solid organ transplantation. Semin Immunol. 2012;24(2):96–108.

    Article  CAS  PubMed  Google Scholar 

  83. Bachmann MF, et al. Distinct kinetics of cytokine production and cytolysis in effector and memory T cells after viral infection. Eur J Immunol. 1999;29(1):291–9.

    Article  CAS  PubMed  Google Scholar 

  84. Budd RC, et al. Distinction of virgin and memory lymphocytes-t stable acquisition of the Pgp-1 glycoprotein concomitant with antigenic-stimulation. J Immunol. 1987;138(10):3120–9.

    CAS  PubMed  Google Scholar 

  85. Damle NK, et al. Differential Costimulatory Effects of Adhesion Molecules B7, Icam-1, Lfa-3, and Vcam-1 on Resting and Antigen-Primed Cd4 + Lymphocytes-T. J Immunol. 1992;148(7):1985–92.

    CAS  PubMed  Google Scholar 

  86. Rogers PR, Dubey C, Swain SL. Qualitative changes accompany memory T cell generation: faster, more effective responses at lower doses of antigen. J Immunol. 2000;164(5):2338–46.

    Article  CAS  PubMed  Google Scholar 

  87. Ford ML, Larsen CP. COvercoming the memory barrier in tolerance induction: molecular mimicry and functional heterogeneity among pathogen-specific T-cell populations. Curr Opin Organ Transplant. 2010;15(4):405–10.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Valujskikh A. The challenge of inhibiting alloreactive T-cell memory. Am J Transplant. 2006;6(4):647–51.

    Article  CAS  PubMed  Google Scholar 

  89. Marco MRL et al. Post-transplant repopulation of naive and memory T cells in blood and lymphoid tissue after alemtuzumab-mediated depletion in heart-transplanted cynomolgus monkeys. Transpl Immunol. 2013;29(1–4):88–98.

    Article  CAS  PubMed  Google Scholar 

  90. Rao SP, et al. Human peripheral blood mononuclear cells exhibit heterogeneous CD52 expression levels and show differential sensitivity to alemtuzumab mediated cytolysis. PLoS One, 2012;7(6).

  91. Fischer A, et al. Severe combined immunodeficiency. A model disease for molecular immunology and therapy. Immunol Rev. 2005;203:98–109.

    Article  CAS  PubMed  Google Scholar 

  92. Antoine C, et al. Long-term survival and transplantation of haemopoietic stem cells for immunodeficiencies: report of the European experience 1968–99. The Lancet. 2003;361(9357):553–60.

    Article  Google Scholar 

  93. Strout MP, Seropian S, Berliner N. Alemtuzumab as a bridge to allogeneic SCT in atypical hemophagocytic lymphohistiocytosis. Nature reviews. Clin Oncol. 2010;7(7):415–20.

    Google Scholar 

  94. Alinari L, et al. Alemtuzumab (Campath-1H) in the treatment of chronic lymphocytic leukemia. Oncogene. 2007;26(25):3644–53.

    Article  CAS  PubMed  Google Scholar 

  95. Gartner F, et al. Lowering the alemtuzumab dose in reduced intensity conditioning allogeneic hematopoietic cell transplantation is associated with a favorable early intense natural killer cell recovery. CytoTherapy. 2013;15(10):1237–44.

    Article  PubMed  CAS  Google Scholar 

  96. Dunbar EM, et al. The relationship between circulating natural killer cells after reduced intensity conditioning hematopoietic stem cell transplantation and relapse-free survival and graft-versus-host disease. Hematol J. 2008;93(12):1852–8.

    Article  Google Scholar 

  97. Slatter MA, et al. Long-term immune reconstitution after anti-CD52-treated or anti-CD34-treated hematopoietic stem cell transplantation for severe T-lymphocyte immunodeficiency. J Allergy Clin Immunol. 2008;121(2):361–7.

    Article  CAS  PubMed  Google Scholar 

  98. Lee F, et al. The effects of CAMPATH-1H on cell viability do not correlate to the CD52 density on the cell surface. PLoS One, 2014;9(7):e103254.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Lim CK, et al. Effect of anti-CD52 antibody alemtuzumab on ex-vivo culture of umbilical cord blood stem cells. J Hematol Oncol. 2008;1:19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Ferrara JLM, et al. Graft-versus-host disease. The Lancet. 2009;373(9674):1550–61.

    Article  CAS  Google Scholar 

  101. Tey SK, et al. Pharmacokinetics and immunological outcomes of alemtuzumab-based treatment for steroid-refractory acute GvHD. Bone Marrow Transplant. 2016;51(8):1153–5.

    Article  CAS  PubMed  Google Scholar 

  102. Marsh RA, et al. Alemtuzumab levels impact acute GVHD, mixed chimerism, and lymphocyte recovery following alemtuzumab, fludarabine, and melphalan RIC HCT. Blood. 2016;127(4):503–12.

    Article  CAS  PubMed  Google Scholar 

  103. Saraf SL, et al. Nonmyeloablative stem cell transplantation with alemtuzumab/low-dose irradiation to cure and improve the quality of life of adults with sickle cell disease. Biol Blood Marrow Transplant. 2016;22(3):441–8.

    Article  CAS  PubMed  Google Scholar 

  104. Kim IK, et al. Saftety and efficacy of alemtuzumab induction in highly sensitized pediatric renal transplant recipients. Transplantation. 2016. doi:10.1097/TP.0000000000001416

Download references

Acknowledgements

The authors wish to thank Dr. Peng Wang for his reading the manuscript. This work was supported by Grants from the National Natural Science Foundation for General and Key Programs (81130055, 31470860, Y.Z.; 81500432, X.S.; 81571563, J.D.), Knowledge Innovation Program of Chinese Academy of Sciences (XDA04020202-19, Y.Z.), The China Manned Space Flight Technology Project (TZ-1), and the CAS/SAFEA International Partnership Program for Creative Research Teams (Y.Z.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junfeng Du, Xiaodong Zhang or Yong Zhao.

Additional information

Responsible Editor: John Di Battista.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Su, H., Shen, X. et al. The immunological function of CD52 and its targeting in organ transplantation. Inflamm. Res. 66, 571–578 (2017). https://doi.org/10.1007/s00011-017-1032-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-017-1032-8

Keywords

Navigation