Skip to main content

Advertisement

Log in

Subset-specific alterations in frequencies and functional signatures of γδ T cells in systemic sclerosis patients

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

Here, we evaluated the distribution and functional profile of circulating CD27+ and CD27 γδ T-cell subsets in systemic sclerosis (SSc) patients to assess their potential role in this disorder.

Materials and methods

Peripheral blood from 39 SSc patients and 20 healthy individuals was used in this study. The TCR-γδ repertoire, cytokine production and cytotoxic signatures of circulating γδ T-cell subsets were assessed by flow cytometry. Gene expression of EOMES, NKG2D and GZMA was evaluated by quantitative RT-PCR in both purified γδ T-cell subsets.

Results

Absolute numbers of γδ T-cell subsets were significantly decreased in SSc groups, likely reflecting their mobilization to the inflamed skin. Both γδ T-cell subsets preserved their relative proportions and Th1-type cytokine responses. However, cytotoxic properties showed significant disease-associated and subset-specific changes. SSc patients exhibited increased percentages of CD27+ γδ T cells expressing granzyme B or perforin and upregulated GZMA expression in diffuse cutaneous SSc. Conversely, EOMES and NKG2D were downregulated in both SSc γδ T-cell subsets vs. normal controls. Interestingly, patients with pulmonary fibrosis showed a biased TCR repertoire, with a selected expansion of effector Vγ9+ γδ T cells associated with increased frequency of cells expressing granzyme B, but decreased IFN-γ production.

Conclusions

Significant alterations on circulating γδ T-cell subsets suggest a deregulated (increased) cytotoxic activity and thus enhanced pathogenic potential of CD27+ γδ T cells in SSc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Varga J, Abraham D. Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest. 2007;117:557–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gu YS, Kong J, Cheema GS, Keen CL, Wick G, Gershwin ME. The immunobiology of systemic sclerosis. Semin Arthritis Rheum. 2008;38:132–60.

    Article  CAS  PubMed  Google Scholar 

  3. Domsic RT, Medsger TA Jr. Disease subsets in clinical practice. In: Varga J, Denton C, Wigley F, editors. Scleroderma: from pathogenesis to comprehensive management. New York: Springer; 2012. p. 45–52.

    Chapter  Google Scholar 

  4. Chung L, Fransen J, van den Hoogen F. Evolving concepts of diagnosis and classification. In: Varga J, Denton C, Wigley F, editors. Scleroderma: from pathogenesis to comprehensive management. New York: Springer; 2012. p. 54–69.

    Google Scholar 

  5. Tiev KP, Abriol J, Burland MC, Antonelli D, Klatzmann D, Cabane J, Boyer O. T cell repertoire in patients with stable scleroderma. Clin Exp Immunol. 2005;139:348–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fuschiotti P, Larregina AT, Ho J, Feghali-Bostwick C, Medsger TA Jr. Interleukin-13-producing CD8 + T cells mediate dermal fibrosis in patients with systemic sclerosis. Arthritis Rheum. 2013;65:236–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stummvoll GH, Aringer M, Grisar J, Steiner CW, Smolen JS, Knobler R, Graninger WB. Increased transendothelial migration of scleroderma lymphocytes. Ann Rheum Dis. 2004;63:569–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Su D, Shen M, Li X, Sun L. Roles of gammadelta T cells in the pathogenesis of autoimmune diseases. Clin Dev Immunol. 2013;2013:985753.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Holcombe RF, Baethge BA, Wolf RE, Betzing KW, Stewart RM. Natural killer cells and γδ T-cells in scleroderma: relationship to disease duration and anti-Scl-70 antibodies. Ann Rheum Dis. 1995;54:69–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Giacomelli R, Matucci-Cerinic M, Cipriani P, Ghersetich I, Lattanzio R, Pavan A, Pignone A, Cagnoni ML, Lotti T, Tonietti G. Circulating Vdelta1+ T cells are activated and accumulate in the skin of systemic sclerosis patients. Arthritis Rheum. 1998;41:327–34.

    Article  CAS  PubMed  Google Scholar 

  11. Born WK, O’Brien RL. γδ T cells develop, respond and survive—with a little help from CD27. Eur J Immunol. 2011;41:26–8.

    Article  CAS  PubMed  Google Scholar 

  12. Ribot JC, deBarros A, Pang DJ, Neves JF, Peperzak V, Roberts SJ, Girardi M, Borst J, Hayday AC, Pennington DJ, Silva-Santos B. CD27 is a thymic determinant of the balance between interferon-gamma- and interleukin-17-producing gammadelta T cell subsets. Nat Immunol. 2009;10:427–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ribot JC, Chaves-Ferreira M, d’Orey F, Wencker M, Goncalves-Sousa N, Decalf J, Simas JP, Hayday AC, Silva-Santos B. Cutting edge: adaptive versus innate receptor signals selectively control the pool sizes of murine IFN-gamma or IL-17-producing gammadelta T cells upon infection. J Immunol. 2010;185:6421–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dieli F, Poccia F, Lipp M, Sireci G, Caccamo N, Salerno A. Differentiation of effector/memory Vdelta2 T cells and migratory routes in lymph nodes or inflammatory sites. J Exp Med. 2003;198:391–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. DeBarros A, Chaves-Ferreira M, d’Orey F, Ribot JC, Silva-Santos B. CD70-CD27 interactions provide survival and proliferative signals that regulate T-cell receptor-driven activation of human gamma-delta peripheral blood lymphocytes. Eur J Immunol. 2011;41:195–201.

    Article  CAS  PubMed  Google Scholar 

  16. ARA. Subcommittee for scleroderma criteria of the american rheumatism association diagnostic and therapeutic criteria committee. preliminary criteria for the classification of systemic sclerosis (scleroderma). Arthritis Rheum. 1980;23:581–90.

    Article  Google Scholar 

  17. LeRoy EC, Black C, Fleischmajer R, Jablonska S, Krieg T, Medsger TA Jr, Rowell N, Wollheim F. Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J Rheumatol. 1988;15:202–5.

    CAS  PubMed  Google Scholar 

  18. Henriques A, Inês L, Pais ML, da Silva JP, Paiva A. Th17 cells in systemic lupus erythematosus share functional features with Th17 cells from normal bone marrow and peripheral tissues. Clin Rheumatol. 2012;31:483–91.

    Article  PubMed  Google Scholar 

  19. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:research0034.1–11.

    Article  Google Scholar 

  20. Riccieri V, Parisi G, Spadaro A, Scrivo R, Barone F, Moretti T, Bernardini G, Strom R, Taccari E, Valesini G. Reduced circulating natural killer T cells and gamma/delta T cells in patients with systemic sclerosis. J Rheumatol. 2005;32:283–6.

    CAS  PubMed  Google Scholar 

  21. Bendersky A, Markovits N, Bank I. Vgamma9 + gammadelta T cells in systemic sclerosis patients are numerically and functionally preserved and induce fibroblast apoptosis. Immunobiology. 2010;215:380–94.

    Article  CAS  PubMed  Google Scholar 

  22. Qin G, Mao H, Zheng J, Sia SF, Liu Y, Chan PL, Lam KT, Peiris JS, Lau YL, Tu W. Phosphoantigen-expanded human gammadelta T cells display potent cytotoxicity against monocyte-derived macrophages infected with human and avian influenza viruses. J Infect Dis. 2009;200:858–65.

    Article  CAS  PubMed  Google Scholar 

  23. Zhu P, Martinvalet D, Chowdhury D, Zhang D, Schlesinger A, Lieberman J. The cytotoxic T lymphocyte protease granzyme A cleaves and inactivates poly(adenosine 5′-diphosphate-ribose) polymerase-1. Blood. 2009;114:1205–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Casciola-Rosen L, Andrade F, Ulanet D, Wong WB, Rosen A. Cleavage by granzyme B is strongly predictive of autoantigen status: implications for initiation of autoimmunity. J Exp Med. 1999;190:815–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oppenheim DE, Roberts SJ, Clarke SL, Filler R, Lewis JM, Tigelaar RE, Girardi M, Hayday AC. Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance. Nat Immunol. 2005;6:928–37.

    Article  CAS  PubMed  Google Scholar 

  26. Intlekofer AM, Banerjee A, Takemoto N, Gordon SM, Dejong CS, Shin H, Hunter CA, Wherry EJ, Lindsten T, Reiner SL. Anomalous type 17 response to viral infection by CD8 T cells lacking T-bet and eomesodermin. Science. 2008;321:408–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pearce EL, Mullen AC, Martins GA, Krawczyk CM, Hutchins AS, Zediak VP, Banica M, DiCioccio CB, Gross DA, Mao CA, Shen H, Cereb N, Yang SY, Lindsten T, Rossant J, Hunter CA, Reiner SL. Control of effector CD8 T cell function by the transcription factor Eomesodermin. Science. 2003;302:1041–3.

    Article  CAS  PubMed  Google Scholar 

  28. Banerjee A, Gordon SM, Intlekofer AM, Paley MA, Mooney EC, Lindsten T, Wherry EJ, Reiner SL. Cutting edge: the transcription factor eomesodermin enables CD8 T cells to compete for the memory cell niche. J Immunol. 2010;185:4988–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rao RR, Li Q, Odunsi K, Shrikant PA. The mTOR kinase determines effector versus memory CD8 T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity. 2010;32:67–78.

    Article  PubMed  Google Scholar 

  30. Wynn T. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214:199–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Champagne E. γδ T cell receptor ligands and modes of antigen recognition. Arch Immunol Ther Exp (Warsz). 2011;59:117–37 (Review).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the patients who took part in this study for their generous cooperation, Natacha Gonçalves-Sousa from Instituto de Medicina Molecular de Lisboa for her suggestions for improvement of the current manuscript and Bruno Marques and Ana Gonçalves for expert assistance in molecular studies.

A. Henriques has received grant support from the Faculty of Medicine, University of Coimbra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Paiva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Additional information

Responsible Editor: John Di Battista.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 380 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henriques, A., Silva, C., Santiago, M. et al. Subset-specific alterations in frequencies and functional signatures of γδ T cells in systemic sclerosis patients. Inflamm. Res. 65, 985–994 (2016). https://doi.org/10.1007/s00011-016-0982-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-016-0982-6

Keywords

Navigation