Skip to main content
Log in

CORM-2 inhibits TXNIP/NLRP3 inflammasome pathway in LPS-induced acute lung injury

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Accumulated studies suggest that exogenously administered carbon monoxide is beneficial for the resolution of acute lung inflammation. The present study aimed to examine the effects and the underlying mechanisms of CORM-2 on thioredoxin-interacting protein (TXNIP)/NLRP3 inflammasome pathway in lipopolysaccharide (LPS)-induced acute lung injury (ALI).

Methods

ALI was intratracheally induced by LPS in C57BL6 mice. CORM-2 or iCORM-2 (30mg/kg i.p.) was administered immediately before LPS instillation. 6 h later, lung bronchoalveolar lavage (BAL) fluids were acquired for IL-18, IL-1β, and cell measurement, and lung issues were collected for histologic examination, wet/dry weight ratio, and determination of TXNIP/NLRP3 inflammasome expression, NLRP3 inflammasome and NF-ΚB activity, and reactive oxygen species (ROS) production.

Results

LPS triggered significant lung edema, lung injury, and leukocyte infiltration, and elevated the levels of IL-1β and IL-18 in lung BAL fluids. CORM-2 pretreatment resulted in a marked amelioration of lung injury and reduced IL-1β and IL-18 secretion in BAL fluids. In lung tissues; CORM-2 down-regulated mRNA and protein level of TXNIP, NLRP3, ASC, and caspase-1. Furthermore, CORM-2 reduced ROS production, inhibited NLRP3 inflammasome and NF-κB activity, and interaction of TXNIP-NLRP3. However, no significant differences were detected between the LPS and iCORM-2 (an inactive variant of CORM-2) group.

Conclusion

CORM-2 suppresses TXNIP/NLRP3 inflammasome pathway and protects against LPS-induced lung injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Spragg RG, Bernard GR, Checkley W, Curtis JR, Gajic O, Guyatt G, et al. Beyond mortality: future clinical research in acute lung injury. Am J Respir Crit Care Med. 2010;181:1121–7.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Matthay MA, Ware LB, Zimmerman GA. The acute respiratory distress syndrome. J Clin Invest. 2012;122:2731–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dolinay T, Kim YS, Howrylak J, Hunninghake GM, An CH, Fredenburgh L, et al. Inflammasome-regulated cytokines are critical mediators of acute lung injury. Am J Respir Crit Care Med. 2012;185:1225–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Grailer JJ, Canning BA, Kalbitz M, Haggadone MD, Dhond RM, Andjelkovic AV, et al. Critical role for the NLRP3 inflammasome during acute lung injury. J Immunol. 2014;192:5974–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. dos Santos G, Kutuzov MA, Ridge KM. The inflammasome in lung diseases. Am J Physiol Lung Cell Mol Physiol. 2012;303:L627–33.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kuipers MT, Aslami H, Janczy JR, van der Sluijs KF, Vlaar AP, Wolthuis EK, et al. Ventilator-induced lung injury is mediated by the NLRP3 inflammasome. Anesthesiology. 2012;116:1104–15.

    Article  CAS  PubMed  Google Scholar 

  7. Wu J, Yan Z, Schwartz DE, Yu J, Malik AB, Hu G. Activation of NLRP3 inflammasome in alveolar macrophages contributes to mechanical stretch-induced lung inflammation and injury. J Immunol. 2013;190:3590–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Makabe H, Kojika M, Takahashi G, Matsumoto N, Shibata S, Suzuki Y, et al. Interleukin–18 levels reflect the long-term prognosis of acute lung injury and acute respiratory distress syndrome. J Anesth. 2012;26:658–63.

    Article  PubMed  Google Scholar 

  9. Gonzalez PK, Zhuang J, Doctrow SR, Malfroy B, Benson PF, Menconi MJ, et al. Role of oxidant stress in the adult respiratory distress syndrome: evaluation of a novel antioxidant strategy in a porcine model of endotoxin-induced acute lung injury. Shock. 1996;6(Suppl 1):S23–6.

    Article  PubMed  Google Scholar 

  10. Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 2010;11:136–40.

    Article  CAS  PubMed  Google Scholar 

  11. Luo YP, Jiang L, Kang K, Fei DS, Meng XL, Nan CC, et al. Hemin inhibits NLRP3 inflammasome activation in sepsis-induced acute lung injury, involving heme oxygenase-1. Int Immunopharmacol. 2014;20:24–32.

    Article  CAS  PubMed  Google Scholar 

  12. Faller S, Hoetzel A. Carbon monoxide in acute lung injury. Curr Pharm Biotechnol. 2012;13:777–86.

    Article  CAS  PubMed  Google Scholar 

  13. Ryter SW, Choi AM. Heme oxygenase-1/carbon monoxide: novel therapeutic strategies in critical care medicine. Curr Drug Targets. 2010;11:1485–94.

    Article  CAS  PubMed  Google Scholar 

  14. Sun B, Sun H, Liu C, Shen J, Chen Z, Chen X. Role of CO-releasing molecules liberated CO in attenuating leukocytes sequestration and inflammatory responses in the lung of thermally injured mice. J Surg Res. 2007;139:128–35.

    Article  CAS  PubMed  Google Scholar 

  15. Sawle P, Foresti R, Mann BE, Johnson TR, Green CJ, Motterlini R. Carbon monoxide-releasing molecules (CO-RMs) attenuate the inflammatory response elicited by lipopolysaccharide in RAW264.7 murine macrophages. Br J Pharmacol. 2005;145:800–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Qin S, Du R, Yin S, Liu X, Xu G, Cao W. Nrf2 is essential for the anti-inflammatory effect of carbon monoxide in LPS-induced inflammation. Inflamm Res. 2015;64:537–48.

    Article  CAS  PubMed  Google Scholar 

  17. Tsoyi K, Lee TY, Lee YS, Kim HJ, Seo HG, Lee JH, et al. Heme-oxygenase-1 induction and carbon monoxide-releasing molecule inhibit lipopolysaccharide (LPS)-induced high-mobility group box 1 release in vitro and improve survival of mice in LPS- and cecal ligation and puncture-induced sepsis model in vivo. Mol Pharmacol. 2009;76:173–82.

    Article  CAS  PubMed  Google Scholar 

  18. Fukumoto J, Fukumoto I, Parthasarathy PT, Cox R, Huynh B, Ramanathan GK, et al. NLRP3 deletion protects from hyperoxia-induced acute lung injury. Am J Physiol Cell Physiol. 2013;305:C182–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu SH, Ma K, Xu B, Xu XR. Carbon monoxide inhalation protects lung from lipopolysaccharide-induced injury in rat. Sheng Li Xue Bao. 2006;58:483–9.

    CAS  PubMed  Google Scholar 

  20. Jacobs RF, Tabor DR, Burks AW, Campbell GD. Elevated interleukin-1 release by human alveolar macrophages during the adult respiratory distress syndrome. Am Rev Respir Dis. 1989;140:1686–92.

    Article  CAS  PubMed  Google Scholar 

  21. Jordan JA, Guo RF, Yun EC, Sarma V, Warner RL, Crouch LD, et al. Role of IL-18 in acute lung inflammation. J Immunol. 2001;167:7060–8.

    Article  CAS  PubMed  Google Scholar 

  22. Kim JY, Park JS, Strassheim D, Douglas I, Diaz del Valle F, Asehnoune K, et al. HMGB1 contributes to the development of acute lung injury after hemorrhage. Am J Physiol Lung Cell Mol Physiol. 2005;288:L958–65.

    Article  CAS  PubMed  Google Scholar 

  23. Ueno H, Matsuda T, Hashimoto S, Amaya F, Kitamura Y, Tanaka M, et al. Contributions of high mobility group box protein in experimental and clinical acute lung injury. Am J Respir Crit Care Med. 2004;170:1310–6.

    Article  PubMed  Google Scholar 

  24. Kamo N, Ke B, Ghaffari AA, Shen XD, Busuttil RW, Cheng G, et al. ASC/caspase-1/IL-1beta signaling triggers inflammatory responses by promoting HMGB1 induction in liver ischemia/reperfusion injury. Hepatology. 2013;58:351–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Willingham SB, Allen IC, Bergstralh DT, Brickey WJ, Huang MT, Taxman DJ, et al. NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and -independent pathways. J Immunol. 2009;183:2008–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kolliputi N, Galam L, Parthasarathy PT, Tipparaju SM, Lockey RF. NALP-3 inflammasome silencing attenuates ceramide-induced transepithelial permeability. J Cell Physiol. 2012;227:3310–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tsoyi K, Nizamutdinova IT, Jang HJ, Mun L, Kim HJ, Seo HG, et al. Carbon monoxide from CORM-2 reduces HMGB1 release through regulation of IFN-beta/JAK2/STAT-1/INOS/NO signaling but not COX-2 in TLR-activated macrophages. Shock. 2010;34:608–14.

    Article  CAS  PubMed  Google Scholar 

  28. Grommes J, Soehnlein O. Contribution of neutrophils to acute lung injury. Mol Med. 2011;17:293–307.

    Article  CAS  PubMed  Google Scholar 

  29. Abraham E, Carmody A, Shenkar R, Arcaroli J. Neutrophils as early immunologic effectors in hemorrhage- or endotoxemia-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2000;279:L1137–45.

    CAS  PubMed  Google Scholar 

  30. Yang CM, Luo SF, Hsieh HL, Chi PL, Lin CC, Wu CC, et al. Interleukin-1beta induces ICAM-1 expression enhancing leukocyte adhesion in human rheumatoid arthritis synovial fibroblasts: involvement of ERK, JNK, AP-1, and NF-kappaB. J Cell Physiol. 2010;224:516–26.

    Article  CAS  PubMed  Google Scholar 

  31. Cao Y, Fei D, Chen M, Sun M, Xu J, Kang K, et al. Role of the nucleotide-binding domain-like receptor protein 3 inflammasome in acute kidney injury. FEBS J. 2015;282:3799–807.

    Article  CAS  PubMed  Google Scholar 

  32. Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 2009;183:787–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tschopp J, Schroder K. NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat Rev Immunol. 2010;10:210–5.

    Article  CAS  PubMed  Google Scholar 

  34. Nakahira K, Kim HP, Geng XH, Nakao A, Wang X, Murase N, et al. Carbon monoxide differentially inhibits TLR signaling pathways by regulating ROS-induced trafficking of TLRs to lipid rafts. J Exp Med. 2006;203:2377–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jung SS, Moon JS, Xu JF, Ifedigbo E, Ryter SW, Choi AM, et al. Carbon monoxide negatively regulates NLRP3 inflammasome activation in macrophages. Am J Physiol Lung Cell Mol Physiol. 2015;308:L1058–67.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu Y, Lian K, Zhang L, Wang R, Yi F, Gao C, et al. TXNIP mediates NLRP3 inflammasome activation in cardiac microvascular endothelial cells as a novel mechanism in myocardial ischemia/reperfusion injury. Basic Res Cardiol. 2014;109:415.

    Article  PubMed  Google Scholar 

  37. Kim SK, Joe Y, Chen Y, Ryu J, Lee JH, Cho GJ, et al. Carbon monoxide decreases interleukin-1beta levels in the lung through the induction of pyrin. Cell Mol Immunol. 2015;. doi:10.1038/cmi.2015.79.

    Google Scholar 

  38. Wilkinson WJ, Kemp PJ. The carbon monoxide donor, CORM-2, is an antagonist of ATP-gated, human P2X4 receptors. Purinergic Signal. 2011;7:57–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gicquel T, Robert S, Loyer P, Victoni T, Bodin A, Ribault C, et al. IL-1beta production is dependent on the activation of purinergic receptors and NLRP3 pathway in human macrophages. FASEB J. 2015;29:4162–73.

    Article  CAS  PubMed  Google Scholar 

  40. Chen K, Zhang J, Zhang W, Zhang J, Yang J, Li K, et al. ATP-P2X4 signaling mediates NLRP3 inflammasome activation: a novel pathway of diabetic nephropathy. Int J Biochem Cell Biol. 2013;45:932–43.

    Article  CAS  PubMed  Google Scholar 

  41. Xue J, Habtezion A. Carbon monoxide-based therapy ameliorates acute pancreatitis via TLR4 inhibition. J Clin Invest. 2014;124:437–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Scientific Foundation of China (Grant No. 81171785), the Natural Scientific Foundation of Heilongjiang Province (Grant No. ZJY0704-02) and the Graduate Innovative Research Program of Harbin Medical University (Grant No. YJSCX2015-21HYD). The authors sincerely thank Dr. Changming Xie, Dr. Jihua Han, Dr. You Zhou and Dr. Bowen Dong for their technical support in our experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyan Zhao.

Additional information

Responsible Editor: Yoshiya Tanaka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 2740 kb)

Supplementary material 2 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Fei, D., Gong, R. et al. CORM-2 inhibits TXNIP/NLRP3 inflammasome pathway in LPS-induced acute lung injury. Inflamm. Res. 65, 905–915 (2016). https://doi.org/10.1007/s00011-016-0973-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-016-0973-7

Keywords

Navigation