Skip to main content

Advertisement

Log in

The role of adenosine and adenosine receptors in the immunopathogenesis of multiple sclerosis

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Introduction

Multiple sclerosis (MS) is a heterogeneous neurological disorder with multifactorial etiologies characterized by demyelination, axonal degeneration, and oligodendroglial death. It is believed that both genetics and environmental risk factors such as infection are involved in disease etiology. Accumulating evidence indicates that alteration in purinergic system signaling is involved in immunity and inflammation. Adenosine, a key purine nucleoside, has been shown to be produced during metabolic stress, including ischemia, inflammatory condition, and tissue injury.

Methods

Extracellular adenosine directly affects various physiological and pathological processes of MS by stimulating G protein-coupled adenosine receptors A1, A2A, A2B, and A3 on the surface of immune cells. It has been suggested that promotion of adenosinergic system may be an important factor in MS pathophysiology and considered as promising therapeutic target for this disease.

Conclusion

In this review, we will discuss about the immunopathologic effects of adenosine on MS and its animal model, experimental autoimmune encephalomyelitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Selter RC, Hemmer B. Update on immunopathogenesis and immunotherapy in multiple sclerosis. Immunotargets Ther. 2013;2:21–30.

    Google Scholar 

  2. Gharibi T, et al. Immunomodulatory characteristics of mesenchymal stem cells and their role in the treatment of multiple sclerosis. Cell Immunol. 2015;293(2):113–21.

    Article  CAS  PubMed  Google Scholar 

  3. Alonso A, Hernán MA. Temporal trends in the incidence of multiple sclerosis a systematic review. Neurology. 2008;71(2):129–35.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Damal K, Stoker E, Foley JF. Optimizing therapeutics in the management of patients with multiple sclerosis: a review of drug efficacy, dosing, and mechanisms of action. Biol Targets Ther. 2013;7:247.

    CAS  Google Scholar 

  5. Mirshafiey A, Jadidi-Niaragh F. Prostaglandins in pathogenesis and treatment of multiple sclerosis. Immunopharmacol Immunotoxicol. 2010;32(4):543–54.

    Article  CAS  PubMed  Google Scholar 

  6. Mulakayala N, et al. Synthesis of novel therapeutic agents for the treatment of multiple sclerosis: a brief overview. Eur J Med Chem. 2013;60:170–86.

    Article  CAS  PubMed  Google Scholar 

  7. Jadidi-Niaragh F, Mirshafiey A. Histamine and histamine receptors in pathogenesis and treatment of multiple sclerosis. Neuropharmacology. 2010;59(3):180–9.

    Article  CAS  PubMed  Google Scholar 

  8. Masino S, Boison D. Adenosine: a key link between metabolism and brain activity. New York: Springer; 2012.

    Google Scholar 

  9. Sperlágh B, Illes P. Purinergic modulation of microglial cell activation. Purinergic Signal. 2007;3(1–2):117–27.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mayne M, et al. Dysregulation of adenosine A1 receptor–mediated cytokine expression in peripheral blood mononuclear cells from multiple sclerosis patients. Ann Neurol. 1999;45(5):633–9.

    Article  CAS  PubMed  Google Scholar 

  11. Nakahara J, et al. Current concepts in multiple sclerosis: autoimmunity versus oligodendrogliopathy. Clin Rev Allergy Immunol. 2012;42(1):26–34.

    Article  CAS  PubMed  Google Scholar 

  12. Ciccarelli O, et al. Pathogenesis of multiple sclerosis: insights from molecular and metabolic imaging. Lancet Neurol. 2014;13(8):807–22.

    Article  CAS  PubMed  Google Scholar 

  13. Jadidi-Niaragh F, Mirshafiey A. Th17 cell, the new player of neuroinflammatory process in multiple sclerosis. Scand J Immunol. 2011;74(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  14. Mirshafiey A, et al. The significance of matrix metalloproteinases in the immunopathogenesis and treatment of multiple sclerosis. Sultan Qaboos Univ Med J. 2014;14(1):e13.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mirshafiey A, Jadidi-Niaragh F. Immunopharmacological role of the leukotriene receptor antagonists and inhibitors of leukotrienes generating enzymes in multiple sclerosis. Immunopharmacol Immunotoxicol. 2010;32(2):219–27.

    Article  CAS  PubMed  Google Scholar 

  16. Jadidi-Niaragh F, Mirshafiey A. Regulatory T-cell as orchestra leader in immunosuppression process of multiple sclerosis. Immunopharmacol Immunotoxicol. 2011;33(3):545–67.

    Article  CAS  PubMed  Google Scholar 

  17. Lassmann H. Pathology and disease mechanisms in different stages of multiple sclerosis. J Neurol Sci. 2013;333(1):1–4.

    Article  CAS  PubMed  Google Scholar 

  18. D’Aversa TG, et al. Myelin basic protein induces inflammatory mediators from primary human endothelial cells and blood–brain barrier disruption: implications for the pathogenesis of multiple sclerosis. Neuropathol Appl Neurobiol. 2013;39(3):270–83.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fischer M, et al. Research highlights inflammation, demyelination and neurodegeneration: risky buddies in multiple sclerosis. CNS Neurol Disord Drug Targets. 2014;13(1):1.

    Article  Google Scholar 

  20. Hussain RZ, et al. Immune surveillance of the central nervous system in multiple sclerosis—Relevance for therapy and experimental models. J Neuroimmunol. 2014;276(1):9–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Neuhaus O, Archelos JJ, Hartung H-P. Immunomodulation in multiple sclerosis: from immunosuppression to neuroprotection. Trends Pharmacol Sci. 2003;24(3):131–8.

    Article  CAS  PubMed  Google Scholar 

  22. Aktas O, Kieseier B, Hartung H-P. Neuroprotection, regeneration and immunomodulation: broadening the therapeutic repertoire in multiple sclerosis. Trends Neurosci. 2010;33(3):140–52.

    Article  CAS  PubMed  Google Scholar 

  23. Jadidi-Niaragh F, Mirshafiey A. Therapeutic approach to multiple sclerosis by novel oral drugs. Recent Pat Inflamm Allergy Drug Discov. 2011;5(1):66–80.

    Article  CAS  PubMed  Google Scholar 

  24. Vincenzi F, et al. Multiple sclerosis lymphocytes upregulate A2A adenosine receptors that are antiinflammatory when stimulated. Eur J Immunol. 2013;43(8):2206–16.

    Article  CAS  PubMed  Google Scholar 

  25. Sachdeva S, Gupta M. Adenosine and its receptors as therapeutic targets: an overview. Saudi Pharm J. 2013;21(3):245–53.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cacciari B, et al. A2B adenosine receptor antagonists: recent developments. Mini Rev Med Chem. 2005;5(12):1053–60.

    Article  CAS  PubMed  Google Scholar 

  27. Newby AC. Adenosine and the concept of ‘retaliatory metabolites’. Trends Biochem Sci. 1984;9(2):42–4.

    Article  CAS  Google Scholar 

  28. Desrosiers MD, et al. Adenosine deamination sustains dendritic cell activation in inflammation. J Immunol. 2007;179(3):1884–92.

    Article  CAS  PubMed  Google Scholar 

  29. Gessi S, et al. A2A adenosine receptors in human peripheral blood cells. Br J Pharmacol. 2000;129(1):2–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cristalli G, et al. Adenosine deaminase: functional implications and different classes of inhibitors. Med Res Rev. 2001;21(2):105–28.

    Article  CAS  PubMed  Google Scholar 

  31. Haskó G, Cronstein BN. Adenosine: an endogenous regulator of innate immunity. Trends Immunol. 2004;25(1):33–9.

    Article  PubMed  Google Scholar 

  32. King AE, et al. Nucleoside transporters: from scavengers to novel therapeutic targets. Trends Pharmacol Sci. 2006;27(8):416–25.

    Article  CAS  PubMed  Google Scholar 

  33. Fredholm BB. Adenosine receptors as drug targets. Exp Cell Res. 2010;316(8):1284–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Deussen A. Metabolic flux rates of adenosine in the heart. Naunyn Schmiedeberg’s Arch Pharmacol. 2000;362(4–5):351–63.

    Article  CAS  Google Scholar 

  35. Thompson LF, et al. Crucial role for ecto-5′-nucleotidase (CD73) in vascular leakage during hypoxia. J Exp Med. 2004;200(11):1395–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Eltzschig HK, et al. Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism. Blood. 2004;104(13):3986–92.

    Article  CAS  PubMed  Google Scholar 

  37. Milne GR, Palmer TM. Anti-inflammatory and immunosuppressive effects of the A 2A adenosine receptor. Sci World J. 2011;11:320–39.

    Article  CAS  Google Scholar 

  38. Bours M, et al. Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther. 2006;112(2):358–404.

    Article  CAS  PubMed  Google Scholar 

  39. Moriwaki Y, Yamamoto T, Higashino K. Enzymes involved in purine metabolism-a review of histochemical localization and functional implications. Histol Histopathol. 1999;14(4):1321–40.

    CAS  PubMed  Google Scholar 

  40. Matsumoto T, Tostes RC, Webb RC. Alterations in vasoconstrictor responses to the endothelium-derived contracting factor uridine adenosine tetraphosphate are region specific in DOCA-salt hypertensive rats. Pharmacol Res. 2012;65(1):81–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Haskó G, et al. Shaping of monocyte and macrophage function by adenosine receptors. Pharmacol Ther. 2007;113(2):264–75.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Fredholm BB, et al. Structure and function of adenosine receptors and their genes. Naunyn Schmiedeberg’s Arch Pharmacol. 2000;362(4–5):364–74.

    Article  CAS  Google Scholar 

  43. Daly JW, Padgett WL. Agonist activity of 2-and 5′-substituted adenosine analogs and their N 6-cycloalkyl derivatives at A1 and A2adenosine receptors coupled to adenylate cyclase. Biochem Pharmacol. 1992;43(5):1089–93.

    Article  CAS  PubMed  Google Scholar 

  44. Livingston M, Heaney L, Ennis M. Adenosine, inflammation and asthma–a review. Inflamm Res. 2004;53(5):171–8.

    Article  CAS  PubMed  Google Scholar 

  45. Chen J-F, Eltzschig HK, Fredholm BB. Adenosine receptors as drug targets—what are the challenges? Nat Rev Drug Discov. 2013;12(4):265–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fredholm BB, et al. International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors—an update. Pharmacol Rev. 2011;63(1):1–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Carlsson J, et al. Structure-based discovery of A2A adenosine receptor ligands. J Med Chem. 2010;53(9):3748–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sitkovsky MV. Use of the A 2A adenosine receptor as a physiological immunosuppressor and to engineer inflammation in vivo. Biochem Pharmacol. 2003;65(4):493–501.

    Article  CAS  PubMed  Google Scholar 

  49. Cronstein BN. Adenosine, an endogenous anti-inflammatory agent. J Appl Physiol. 1994;76(1):5–13.

    CAS  PubMed  Google Scholar 

  50. Ohta A, Sitkovsky M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature. 2001;414(6866):916–20.

    Article  CAS  PubMed  Google Scholar 

  51. Gessi S, et al. Adenosine and lymphocyte regulation. Purinergic Signal. 2007;3(1–2):109–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ryzhov S, et al. Host A2B Adenosine Receptors Promote Carcinoma Growth. Neoplasia. 2008;10(9):987–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhong H, et al. Activation of murine lung mast cells by the adenosine A3 receptor. J Immunol. 2003;171(1):338–45.

    Article  CAS  PubMed  Google Scholar 

  54. Haskó G, et al. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov. 2008;7(9):759–70.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Müller CE, Jacobson KA. Recent developments in adenosine receptor ligands and their potential as novel drugs. Biochi Biophys Acta (BBA) Biomembr. 2011;1808(5):1290–308.

    Article  Google Scholar 

  56. Jacobson KA, Gao Z-G. Adenosine receptors as therapeutic targets. Nat Rev Drug Discov. 2006;5(3):247–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mills J, et al. Never underestimate the power of adenosine in multiple sclerosis. CNS Neurol Disorders Drug Targets. 2013;12(7):1.

    Google Scholar 

  58. Johnston JB, et al. Diminished adenosine A1 receptor expression on macrophages in brain and blood of patients with multiple sclerosis. Ann Neurol. 2001;49(5):650–8.

    Article  CAS  PubMed  Google Scholar 

  59. Koedel U, et al. Apoptosis is essential for neutrophil functional shutdown and determines tissue damage in experimental pneumococcal meningitis. PLoS Pathog. 2009;5(5):e1000461.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Naegele M, et al. Neutrophils in multiple sclerosis are characterized by a primed phenotype. J Neuroimmunol. 2012;242(1):60–71.

    Article  CAS  PubMed  Google Scholar 

  61. Mossberg N, et al. Oxygen radical production in leukocytes and disease severity in multiple sclerosis. J Neuroimmunol. 2009;213(1):131–4.

    Article  CAS  PubMed  Google Scholar 

  62. Hernández-Pedro NY et al. Initial immunopathogenesis of multiple sclerosis: innate immune response. Clin Dev Immunol. 2013;2013:413465.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Csóka B, et al. A2A adenosine receptors and C/EBPβ are crucially required for IL-10 production by macrophages exposed to Escherichia coli. Blood. 2007;110(7):2685–95.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Tsutsui S, et al. Glucocorticoids regulate innate immunity in a model of multiple sclerosis: reciprocal interactions between the A1 adenosine receptor and β-arrestin-1 in monocytoid cells. FASEB J. 2008;22(3):786–96.

    Article  CAS  PubMed  Google Scholar 

  65. Prabhakar U, et al. Inhibition of LPS-induced TNFα production in human monocytes by adenosine (A2) receptor selective agonists. Int J Immunopharmacol. 1995;17(3):221–4.

    Article  CAS  PubMed  Google Scholar 

  66. La Sala A, Gadina M, Kelsall BL. Gi-protein-dependent inhibition of IL-12 production is mediated by activation of the phosphatidylinositol 3-kinase-protein 3 kinase B/Akt pathway and JNK. J Immunol. 2005;175(5):2994–9.

    Article  PubMed  Google Scholar 

  67. Koscsó B, et al. Adenosine augments IL-10 production by microglial cells through an A2B adenosine receptor-mediated process. J Immunol. 2012;188(1):445–53.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Saijo K, Crotti A, Glass CK. Regulation of microglia activation and deactivation by nuclear receptors. Glia. 2013;61(1):104–11.

    Article  PubMed  Google Scholar 

  69. Bi W, et al. Rifampicin inhibits microglial inflammation and improves neuron survival against inflammation. Brain Res. 2011;1395:12–20.

    Article  CAS  PubMed  Google Scholar 

  70. Koning N, et al. Downregulation of macrophage inhibitory molecules in multiple sclerosis lesions. Ann Neurol. 2007;62(5):504–14.

    Article  CAS  PubMed  Google Scholar 

  71. Sevigny CP, et al. Activation of adenosine 2A receptors attenuates allograft rejection and alloantigen recognition. J Immunol. 2007;178(7):4240–9.

    Article  CAS  PubMed  Google Scholar 

  72. Lappas CM, Rieger JM, Linden J. A2A adenosine receptor induction inhibits IFN-γ production in murine CD4 + T cells. J Immunol. 2005;174(2):1073–80.

    Article  CAS  PubMed  Google Scholar 

  73. Johnston A, et al. The anti-inflammatory action of methotrexate is not mediated by lymphocyte apoptosis, but by the suppression of activation and adhesion molecules. Clin Immunol. 2005;114(2):154–63.

    Article  CAS  PubMed  Google Scholar 

  74. MacKenzie WM, Hoskin DW, Blay J. Adenosine suppresses α4β7 integrin-mediated adhesion of T lymphocytes to colon adenocarcinoma cells. Exp Cell Res. 2002;276(1):90–100.

    Article  CAS  PubMed  Google Scholar 

  75. Yang Z, et al. Infarct-sparing effect of A2A-adenosine receptor activation is due primarily to its action on lymphocytes. Circulation. 2005;111(17):2190–7.

    Article  CAS  PubMed  Google Scholar 

  76. Wei W, et al. Blocking A2B adenosine receptor alleviates pathogenesis of experimental autoimmune encephalomyelitis via inhibition of IL-6 production and Th17 differentiation. J Immunol. 2013;190(1):138–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Buc M. Role of regulatory T cells in pathogenesis and biological therapy of multiple sclerosis. Mediators Inflamm. 2013;2013:11. doi:10.1155/2013/963748.

    Article  Google Scholar 

  78. Lowther DE, Hafler DA. Regulatory T cells in the central nervous system. Immunol Rev. 2012;248(1):156–69.

    Article  PubMed  Google Scholar 

  79. Buckner JH. Mechanisms of impaired regulation by CD4 + CD25 + FOXP3 + regulatory T cells in human autoimmune diseases. Nat Rev Immunol. 2010;10(12):849–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yao SQ, et al. Genetic inactivation of the adenosine A2A receptor exacerbates brain damage in mice with experimental autoimmune encephalomyelitis. J Neurochem. 2012;123(1):100–12.

    Article  CAS  PubMed  Google Scholar 

  81. Mills JH, et al. CD73 is required for efficient entry of lymphocytes into the central nervous system during experimental autoimmune encephalomyelitis. Proc Natl Acad Sci. 2008;105(27):9325–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dai S-S, Zhou Y-G. Adenosine 2A receptor: a crucial neuromodulator with bidirectional effect in neuroinflammation and brain injury. Rev Neurosci. 2011;22(2):231–9.

    Article  CAS  PubMed  Google Scholar 

  83. Engelhardt B. T cell migration into the central nervous system during health and disease: different molecular keys allow access to different central nervous system compartments. Clin Exp Neuroimmunol. 2010;1(2):79–93.

    Article  CAS  Google Scholar 

  84. Stone TW, Ceruti S, Abbracchio MP. Adenosine receptors and neurological disease: neuroprotection and neurodegeneration. Handb Exp Pharmacol. 2009;193:535–587.

    Article  CAS  PubMed  Google Scholar 

  85. Chen J-F, et al. Adenosine A 2A receptors and brain injury: broad spectrum of neuroprotection, multifaceted actions and “fine tuning” modulation. Prog Neurobiol. 2007;83(5):310–31.

    Article  CAS  PubMed  Google Scholar 

  86. Tsutsui S, et al. A1 adenosine receptor upregulation and activation attenuates neuroinflammation and demyelination in a model of multiple sclerosis. J Neurosci. 2004;24(6):1521–9.

    Article  CAS  PubMed  Google Scholar 

  87. Chen GQ, et al. Chronic caffeine treatment attenuates experimental autoimmune encephalomyelitis induced by guinea pig spinal cord homogenates in Wistar rats. Brain Res. 2010;1309:116–25.

    Article  CAS  PubMed  Google Scholar 

  88. Mills JH, et al. A2A adenosine receptor signaling in lymphocytes and the central nervous system regulates inflammation during experimental autoimmune encephalomyelitis. J Immunol. 2012;188(11):5713–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Melani A, et al. Selective adenosine A2a receptor antagonism reduces JNK activation in oligodendrocytes after cerebral ischaemia. Brain. 2009;132(6):1480–95.

    Article  PubMed  Google Scholar 

  90. Loram LC, et al. Adenosine 2A receptor agonism: a single intrathecal administration attenuates motor paralysis in experimental autoimmune encephalopathy in rats. Brain Behav Immun. 2015;46:50–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Yousefi.

Additional information

Responsible Editor: Yoshiya Tanaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safarzadeh, E., Jadidi-Niaragh, F., Motallebnezhad, M. et al. The role of adenosine and adenosine receptors in the immunopathogenesis of multiple sclerosis. Inflamm. Res. 65, 511–520 (2016). https://doi.org/10.1007/s00011-016-0936-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-016-0936-z

Keywords

Navigation