Skip to main content
Log in

Monophosphoryl lipid A-induced pro-inflammatory cytokine expression does not require CD14 in primary human dendritic cells

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

To elucidate if TLR4-mediated MyD88 and TRIF signalling by the clinically applicable Lipopolysaccharide (LPS)-derivative monophosphoryl lipid A (MPLA) in primary human dendritic cells requires LPS cofactors LPS-binding protein (LBP) and CD14.

Methods

Cytokine production by monocyte-derived DCs stimulated with MPLA or LPS was determined using ELISA. To investigate involvement of CD14 for action of LPS or MPLA, CD14 was inhibited using blocking antibodies or down-modulated using specific siRNA. To assess involvement of LBP monocyte-derived DCs were stimulated in serum-free culture medium in absence or presence of purified LBP.

Results

LBP and CD14 are not required for and do not enhance the capacity of MPLA to induce MyD88- and TRIF-dependent pro-inflammatory IL-6 and TNF-α. Interestingly, although CD14 is required for TRIF-dependent downstream events in mice, we show that in human CD14 is redundant for MPLA-induced TRIF-dependent chemokine production.

Conclusions

These findings provide novel insight in the modes of action of MPLA in human and show that, compared to LPS, MyD88 and TRIF signalling in dendritic cells by MPLA is not mediated nor amplified by TLR4 cofactors. This gives insight why MPLA induces immune activation without provoking toxicity in human and clarifies why MPLA can be used as activating compound for clinically applicable immuno-activatory cellular products grown in serum-free regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

LPS:

Lipopolysaccharide

MPLA:

Monophosphoryl lipid A

LBP:

LPS-binding protein

MPLAs:

MPLA derived from S. minnesota re595

LPSs:

LPS derived from S. typhimurium

MPLAe:

MPLA derived from E. coli r515

LPSe:

LPS derived from E. coli O111B4

RANTES:

Chemokine CCL5

References

  1. Kundi M. New hepatitis B vaccine formulated with an improved adjuvant system. Expert Rev Vaccines. 2007;6:133–40.

    Article  CAS  PubMed  Google Scholar 

  2. Schwarz TF. Clinical update of the AS04-adjuvanted human papillomavirus-16/18 cervical cancer vaccine. Cervarix Adv Ther. 2009;26:983–98.

    Article  PubMed  Google Scholar 

  3. Casella CR, Mitchell TC. Putting endotoxin to work for us: monophosphoryl lipid A as a safe and effective vaccine adjuvant. Cell Mol Life Sci. 2008;65:3231–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Garcon N, Wettendorff M, van Mechelen M. Role of AS04 in human papillomavirus vaccine: mode of action and clinical profile. Expert Opin Biol Ther. 2011;11:667–77.

    Article  PubMed  Google Scholar 

  5. Martin M, Michalek SM, Katz J. Role of innate immune factors in the adjuvant activity of monophosphoryl lipid A. Infect Immun. 2003;71:2498–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. ten Brinke A, Karsten ML, Dieker MC, Zwaginga JJ, van Ham SM. The clinical grade maturation cocktail monophosphoryl lipid A plus IFNgamma generates monocyte-derived dendritic cells with the capacity to migrate and induce Th1 polarization. Vaccine. 2007;25:7145–52.

    Article  PubMed  Google Scholar 

  7. McAleer JP, Vella AT. Educating CD4 T cells with vaccine adjuvants: lessons from lipopolysaccharide. Trends Immunol. 2010;31:429–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11:373–84.

    Article  CAS  PubMed  Google Scholar 

  9. Kagan JC, Medzhitov R. Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell. 2006;125:943–55.

    Article  CAS  PubMed  Google Scholar 

  10. Hoebe K, Janssen EM, Kim SO, Alexopoulou L, Flavell RA, Han J, Beutler B. Upregulation of costimulatory molecules induced by lipopolysaccharide and double-stranded RNA occurs by Trif-dependent and Trif-independent pathways. Nat Immunol. 2003;4:1223–9.

    Article  CAS  PubMed  Google Scholar 

  11. Hoebe K, Du X, Goode J, Mann N, Beutler B. Lps2: a new locus required for responses to lipopolysaccharide, revealed by germline mutagenesis and phenotypic screening. J Endotoxin Res. 2003;9:250–5.

    Article  CAS  PubMed  Google Scholar 

  12. Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K, Akira S. Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science. 2003;301:640–3.

    Article  CAS  PubMed  Google Scholar 

  13. Kolanowski ST, Dieker MC, Lissenberg-Thunnissen SN, van Schijndel GM, van Ham SM, ten Brinke A. TLR4-mediated pro-inflammatory dendritic cell differentiation in humans requires the combined action of MyD88 and TRIF. Innate Immun. 2013;20:423–30.

    Article  PubMed  Google Scholar 

  14. Sasai M, Yamamoto M. Pathogen recognition receptors: ligands and signaling pathways by Toll-like receptors. Int Rev Immunol. 2013;32:116–33.

    Article  CAS  PubMed  Google Scholar 

  15. Pugin J, Schurer-Maly CC, Leturcq D, Moriarty A, Ulevitch RJ, Tobias PS. Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide-binding protein and soluble CD14. Proc Natl Acad Sci USA. 1993;90:2744–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990;249:1431–3.

    Article  CAS  PubMed  Google Scholar 

  17. Ulevitch RJ. Recognition of bacterial endotoxins by receptor-dependent mechanisms. Adv Immunol. 1993;53:267–89.

    Article  CAS  PubMed  Google Scholar 

  18. Viriyakosol S, Tobias PS, Kitchens RL, Kirkland TN. MD-2 binds to bacterial lipopolysaccharide. J Biol Chem. 2001;276:38044–51.

    CAS  PubMed  Google Scholar 

  19. Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med. 1999;189:1777–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bingle CD, Craven CJ. Meet the relatives: a family of BPI- and LBP-related proteins. Trends Immunol. 2004;25:53–5.

    Article  CAS  PubMed  Google Scholar 

  21. Schumann RR. Old and new findings on lipopolysaccharide-binding protein: a soluble pattern-recognition molecule. Biochem Soc Trans. 2011;39:989–93.

    Article  CAS  PubMed  Google Scholar 

  22. Miyake K. Roles for accessory molecules in microbial recognition by Toll-like receptors. J Endotoxin Res. 2006;12:195–204.

    Article  CAS  PubMed  Google Scholar 

  23. Tobias PS, Soldau K, Gegner JA, Mintz D, Ulevitch RJ. Lipopolysaccharide binding protein-mediated complexation of lipopolysaccharide with soluble CD14. J Biol Chem. 1995;270:10482–8.

    Article  CAS  PubMed  Google Scholar 

  24. Tobias PS, Soldau K, Kline L, Lee JD, Kato K, Martin TP, Ulevitch RJ. Cross-linking of lipopolysaccharide (LPS) to CD14 on THP-1 cells mediated by LPS-binding protein. J Immunol. 1993;150:3011–21.

    CAS  PubMed  Google Scholar 

  25. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801.

    Article  CAS  PubMed  Google Scholar 

  26. Casella CR, Mitchell TC. Inefficient TLR4/MD-2 Heterotetramerization by Monophosphoryl Lipid A. PLoS One. 2013;8:e62622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maeshima N, Fernandez RC. Recognition of lipid A variants by the TLR4-MD-2 receptor complex. Front Cell Infect Microbiol. 2013;3:3.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tsukamoto H, Fukudome K, Takao S, Tsuneyoshi N, Kimoto M. Lipopolysaccharide-binding protein-mediated Toll-like receptor 4 dimerization enables rapid signal transduction against lipopolysaccharide stimulation on membrane-associated CD14-expressing cells. Int Immunol. 2010;22:271–80.

    Article  CAS  PubMed  Google Scholar 

  29. Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature. 2009;458:1191–5.

    Article  CAS  PubMed  Google Scholar 

  30. Tanimura N, Saitoh S, Matsumoto F, Akashi-Takamura S, Miyake K. Roles for LPS-dependent interaction and relocation of TLR4 and TRAM in TRIF-signaling. Biochem Biophys Res Commun. 2008;368:94–9.

    Article  CAS  PubMed  Google Scholar 

  31. Zanoni I, Ostuni R, Marek LR, Barresi S, Barbalat R, Barton GM, Granucci F, Kagan JC. CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell. 2011;147:868–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Roy S, Karmakar M, Pearlman E. CD14 mediates Toll-like receptor 4 (TLR4) endocytosis and spleen tyrosine kinase (Syk) and interferon regulatory transcription factor 3 (IRF3) activation in epithelial cells and impairs neutrophil infiltration and Pseudomonas aeruginosa killing in vivo. J Biol Chem. 2014;289:1174–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jiang Z, Georgel P, Du X, Shamel L, Sovath S, Mudd S, Huber M, Kalis C, Keck S, Galanos C, Freudenberg M, Beutler B. CD14 is required for MyD88-independent LPS signaling. Nat Immunol. 2005;6:565–70.

    Article  CAS  PubMed  Google Scholar 

  34. Lloyd-Jones KL, Kelly MM, Kubes P. Varying importance of soluble and membrane CD14 in endothelial detection of lipopolysaccharide. J Immunol. 2008;181:1446–53.

    Article  CAS  PubMed  Google Scholar 

  35. Gangloff M. Different dimerisation mode for TLR4 upon endosomal acidification? Trends Biochem Sci. 2012;37:92–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tanimura N, Saitoh SI, Ohto U, Akashi-Takamura S, Fujimoto Y, Fukase K, Shimizu T, Miyake K. The attenuated inflammation of MPL is due to the lack of CD14-dependent tight dimerization of the TLR4/MD2 complex at the plasma membrane. Int Immunol. 2014;16:307–14.

    Article  Google Scholar 

  37. Kagan JC, Su T, Horng T, Chow A, Akira S, Medzhitov R. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat Immunol. 2008;9:361–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mata-Haro V, Cekic C, Martin M, Chilton PM, Casella CR, Mitchell TC. The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science. 2007;316:1628–32.

    Article  CAS  PubMed  Google Scholar 

  39. Ohto U, Fukase K, Miyake K, Satow Y. Crystal structures of human MD-2 and its complex with antiendotoxic lipid IVa. Science. 2007;316:1632–4.

    Article  CAS  PubMed  Google Scholar 

  40. ten Brinke A, van Schijndel G, Visser R, de Gruijl TD, Zwaginga JJ, van Ham SM. Monophosphoryl lipid A plus IFNgamma maturation of dendritic cells induces antigen-specific CD8 + cytotoxic T cells with high cytolytic potential. Cancer Immunol Immunother. 2010;59:1185–95.

    Article  CAS  PubMed  Google Scholar 

  41. Gangloff SC, Zahringer U, Blondin C, Guenounou M, Silver J, Goyert SM. Influence of CD14 on ligand interactions between lipopolysaccharide and its receptor complex. J Immunol. 2005;175:3940–5.

    Article  CAS  PubMed  Google Scholar 

  42. Wright SD. CD14 and innate recognition of bacteria. J Immunol. 1995;155:6–8.

    CAS  PubMed  Google Scholar 

  43. Kim D, Kim JY. Anti-CD14 antibody reduces LPS responsiveness via TLR4 internalization in human monocytes. Mol Immunol. 2013;57:210–5.

    Article  PubMed  Google Scholar 

  44. Kolb JP, Casella CR, SenGupta S, Chilton PM, Mitchell TC. Type I interferon signaling contributes to the bias that Toll-like receptor 4 exhibits for signaling mediated by the adaptor protein TRIF. Sci Signal. 2014;7:ra108.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Triantafilou M, Lepper PM, Olden R, Dias IS, Triantafilou K. Location, location, location: is membrane partitioning everything when it comes to innate immune activation? Mediat Inflamm. 2011;2011:186093.

    Article  Google Scholar 

  46. Resman N, Oblak A, Gioannini TL, Weiss JP, Jerala R. Tetraacylated lipid A and paclitaxel-selective activation of TLR4/MD-2 conferred through hydrophobic interactions. J Immunol. 2014;192:1887–95.

    Article  CAS  PubMed  Google Scholar 

  47. Beamer LJ, Carroll SF, Eisenberg D. The BPI/LBP family of proteins: a structural analysis of conserved regions. Protein Sci. 1998;7:906–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Beamer LJ, Carroll SF, Eisenberg D. The three-dimensional structure of human bactericidal/permeability-increasing protein: implications for understanding protein-lipopolysaccharide interactions. Biochem Pharmacol. 1999;57:225–9.

    Article  CAS  PubMed  Google Scholar 

  49. Kelley SL, Lukk T, Nair SK, Tapping RI. The crystal structure of human soluble CD14 reveals a bent solenoid with a hydrophobic amino-terminal pocket. J Immunol. 2013;190:1304–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jahr TG, Sundan A, Lichenstein HS, Espevik T. Influence of CD14, LBP and BPI in the monocyte response to LPS of different polysaccharide chain length. Scand J Immunol. 1995;42:119–27.

    Article  CAS  PubMed  Google Scholar 

  51. Anas AA, Hovius JWR, van’t Veer C, van der Poll T, de Vos AF. Role of CD14 in a mouse model of acute lung inflammation induced by different lipopolysaccharide chemotypes. PLoS One. 2010;5:e10183.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jerala R. Structural biology of the LPS recognition. Int J Med Microbiol. 2007;297:353–63.

    Article  CAS  PubMed  Google Scholar 

  53. Kitchens RL, Munford RS. Enzymatically deacylated lipopolysaccharide (LPS) can antagonize LPS at multiple sites in the LPS recognition pathway. J Biol Chem. 1995;270:9904–10.

    Article  CAS  PubMed  Google Scholar 

  54. Evans JT, Cluff CW, Johnson DA, Lacy MJ, Persing DH, Baldridge JR. Enhancement of antigen-specific immunity via the TLR4 ligands MPL adjuvant and Ribi. 529. Expert Rev Vaccines. 2003;2:219–29.

    Article  CAS  PubMed  Google Scholar 

  55. Watanabe S, Kumazawa Y, Inoue J. Liposomal lipopolysaccharide initiates TRIF-dependent signaling pathway independent of CD14. PLoS One. 2013;8:e60078_1–7.

    Google Scholar 

Download references

Acknowledgments

We thank Gijs van Schijndel and Miranda Dieker for technical assistance. We thank Prof. dr. van der Schoot, Sanquin Blood Supply for provision of mouse anti-human CD14.22 antibodies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja ten Brinke.

Ethics declarations

Funding

This work was supported by a grant from the Joghem van Loghem foundation.

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Responsible Editor: John Di Battista.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

MPLA does not require LBP to induce cytokine production. (A,B) IL-6 production by DCs stimulated with a titration of LBP in serum-free IMDM in presence of (A) 10 ng/ml LPSe, one representative experiment out of 6 is shown, or (B) 10 μg/ml MPLAe, a representative experiment (n = 7). (C,D) TNF-α (C) and IL-6 (D) production by DCs stimulated with indicated concentrations of MPLAs in presence or absence of LBP. Cytokine production is shown relative to stimulation with comparable amounts of MPLAs in absence of LBP, n = 8. For statistical analysis a paired t test was performed (EPS 92 kb)

Fig. S2

RANTES production is solely TRIF dependent in human moDCs. To verify that production of chemokine RANTES was TRIF dependent, MyD88 or TRIF was down-regulated using siRNA prior to stimulation of iDCs with MPLAe. To down-regulate MyD88 of TRIF iDCs were electroporated with control siRNA (siC) or specific siRNA targeting MyD88 (siM) or TRIF (siT). Two days after electroporation iDCs were stimulated with MPLAe. Production of TNF-α and IL-6 was lower in MyD88- and TRIF down-regulated DCs compared to control siRNA-treated DCs (A, B) while production of RANTES was only decreased in TRIF down-regulated DCs, but not MyD88 down-regulated DCs (C). Concentration of cytokines TNF-α (A), IL-6 (B) or chemokine RANTES (C) was determined in supernatant harvested 24 h after stimulation with MPLA, siMyD88, n = 17, siTRIF n = 8, a paired t test was performed for statistical analysis, values were compared to siC condition *: p < 0.05 (EPS 117 kb)

Fig. S3

CD14 is not required for MPLAe-mediated cytokine production. (A-C) Cytokine production by DCs stimulated with LPSe in the presence of control antibodies (CTRL, grey lines) or CD14-blocking antibodies (a-CD14, black lines). LPSe-stimulated production of TNF-α (A), IL-6 (B), a representative experiment (n = 7). (C) LPSe responsiveness by a-CD14 treatment is quantified as described in materials & methods, n = 4. (D,E) MPLAe-stimulated production of TNF-α (D) or IL-6 (E), one representative experiment out of 9 is shown. (F,G) MPLAe-stimulated production of TNF-α (F), IL-6 (G), as a  % of CTRL condition n = 6. (C, F, G) A one sample t test was performed for statistical analysis. *: p < 0.05, **: p < 0.01 (EPS 145 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolanowski, S.T.H.M., Lissenberg-Thunnissen, S.N., Emal, D. et al. Monophosphoryl lipid A-induced pro-inflammatory cytokine expression does not require CD14 in primary human dendritic cells. Inflamm. Res. 65, 449–458 (2016). https://doi.org/10.1007/s00011-016-0927-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-016-0927-0

Keywords

Navigation