Skip to main content

Advertisement

Log in

Alterations in Hoffa’s fat pad induced by an inflammatory response following idealized anterior cruciate ligament surgery

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

To determine whether inflammation following anterior cruciate ligament (ACL) reconstruction leads to long-term pathological changes in the infrapatellar fat pad (IPFP or Hoffa’s fat pad) which could compromise the integrity of the knee joint.

Materials and methods

Sixteen mature sheep underwent anatomic idealized ACL reconstruction surgery (ACL-R) and were sacrificed at 2 weeks (n = 9) and 20 weeks (n = 7) post-ACL-R. Five additional animals served as unoperated controls. A histological grading protocol was developed to quantify the changes in the IPFP post-injury. mRNA expression levels for key markers of inflammation, angiogenesis and tissue regeneration were assessed by qPCR.

Results

The IPFP exhibited altered cellularity and fibrosis at 2 and 20 weeks post-ACL-R. Immunohistochemistry detected macrophage-like cells in the IPFP which were increased at 20 weeks. Specific pro-inflammatory cytokines and IPFP specific adipokines exhibited changes indicating early inflammation mediated alterations. Elevations in CD105 mRNA levels at 2 weeks corroborated the increases in neovascularization observed in the IPFP following injury.

Conclusions

Sustained long-term pathological changes stemming from inflammation are present in IPFP tissue after ACL-R surgery and may compromise the long-term integrity of the knee joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Galllagher J, Tierney P, Murray P, O’Brien M. The infrapatellar fat pad: anatomy and clinical correlations. Knee Surg Sports Traumatol Arthrosc. 2005;13(4):268–72.

    Article  Google Scholar 

  2. Jacobson JA, Lenchik L, Ruhoy MK, Schweitzer ME, Resnick D. MR imaging of the infrapatellar fat pad of Hoffa. Radiographics. 1997;17:675–91.

    Article  CAS  PubMed  Google Scholar 

  3. Ballegaard C, Riis RG, Bliddal H, Christensen R, Henriksen M, Bartels EM, Lohmander LS, Hunter DJ, Bouert R, Boesen M. Knee pain and inflammation in the infrapatellar fat pad estimated by conventional and dynamic contrast-enhanced magnetic resonance imaging in obese patients with osteoarthritis: a cross-sectional study. Osteoarthr Cartil. 2014;22(7):933–40.

    Article  CAS  PubMed  Google Scholar 

  4. Clockaerts S, Bastiaansen-Jenniskens YM, Van Osch GV, et al. The infrapatellar fat pad should be considered as an active osteoarthritic joint tissue. Osteoarthr Cartil. 2010;18(7):876–82.

    Article  CAS  PubMed  Google Scholar 

  5. Neuman P, Kostogiannis I, Fridén T, et al. Patellofemoral osteoarthritis 15 years after anterior cruciate ligament injury—a prospective cohort study. Osteoarthr Cartil. 2009;17(3):284–90.

    Article  CAS  PubMed  Google Scholar 

  6. Gillquist J, Messner K. Anterior cruciate ligament reconstruction and the long-term incidence of gonarthrosis. Sports Med. 1999;27(3):143–56.

    Article  CAS  PubMed  Google Scholar 

  7. Daniel DM, Stone ML, Dobson BE, et al. Fate of the ACL-injured patient. A prospective outcome study. Am J Sports Med. 1994;22(5):632–44.

    Article  CAS  PubMed  Google Scholar 

  8. Heard BJ, Achari Y, Chung M, et al. Early joint tissue changes are highly correlated with a set of inflammatory and degradative synovial biomarkers after ACL autograft and its sham surgery in an ovine model. J Orthop Res. 2011;29(8):1185–92.

    Article  PubMed  Google Scholar 

  9. Heard BJ, Solbak NM, Achari Y, et al. Changes of early post-traumatic osteoarthritis in an ovine model of simulated ACL reconstruction are associated with transient acute post-injury synovial inflammation and tissue catabolism. Osteoarthr Cartil. 2013;21(12):1942–9.

    Article  CAS  PubMed  Google Scholar 

  10. Frayn KN, Karpe F, Fielding BA, et al. Integrative physiology of human adipose tissue. Int J Obes Metab Disord. 2003;27(8):875–88.

    Article  CAS  Google Scholar 

  11. Ushiyama T, Chano T, Inoue K, Matsusue Y. Cytokine production in the infrapatellar fat pad: another source of cytokines in knee synovial fluids. Ann Rheum Dis. 2003;62(2):108–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Abreu MR, Chung CB, Trudell D, Resnick D. Hoffa’s fat pad injuries and their relationship with anterior cruciate ligament tears: new observations based on MR imaging in patients and MR imaging and anatomic correlation in cadavers. Skelet Radiol. 2008;37(4):301–6.

    Article  Google Scholar 

  13. Drez DJ, DeLee J, Holden JP, et al. Anterior cruciate ligament reconstruction using bone- patellar tendon-bone allografts. A biological and biomechanical evaluation in goats. Am J Sports Med. 1991;19(3):256–63.

    Article  PubMed  Google Scholar 

  14. Adams ME, Billingham ME, Muir H. The glycosaminoglycans in menisci in experimental and natural osteoarthritis. Arthritis Rheum. 1983;26(1):69–76.

    Article  CAS  PubMed  Google Scholar 

  15. Cummings JF, Grood ES, Levy MS, et al. The effects of graft width and graft laxity on the outcome of caprine anterior cruciate ligament reconstruction. J Orthop Res. 2002;20(2):338–45.

    Article  CAS  PubMed  Google Scholar 

  16. Reno C, Marchuk L, Sciore P, et al. Rapid isolation of total RNA from small samples of hypocellular, dense connective tissues. Biotechniques. 1997;22(6):1082–6.

    CAS  PubMed  Google Scholar 

  17. Lemor A, Mielenz M, Altmann M, et al. mRNA abundance of adiponectin and its receptors, leptin and visfatin and of G-protein coupled receptor 41 in five different fat depots from sheep. J Anim Physiol Anim Nutr. 2010;94(5):96–101.

    Article  Google Scholar 

  18. Remst DF, Blom AB, Vitters EL, Bank RA, van den Berg WB, Blaney Davidson EN, van der Kraan PM. Gene expression analysis of murine and human osteoarthritis synovium reveals elevation of transforming growth factor β-responsive genes in osteoarthritis-related fibrosis. Arthritis Rheumatol. 2014;66(3):647–56.

    Article  CAS  PubMed  Google Scholar 

  19. Golbidi S, Laher I. Exercise induced adipokine changes and the metabolic syndrome. J Diabetes Res. 2014;2014:726861 Epub 2014 Jan 19.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Warrington K, Hillarby MC, Li C, Letarte M, Kumar S. Functional role of CD105 in TGF-beta1 signalling in murine and human endothelial cells. Anticancer Res. 2005;25(3B):1851–64 PubMed PMID: 16158917.

    CAS  PubMed  Google Scholar 

  21. Jantsch J, Binger KJ, Müller DN, Titze J. Macrophages in homeostatic immune function. Front Physiol. 2014;5:146. doi:10.3389/fphys.2014.00146. eCollection 2014.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Stålman A, Bring D, Ackermann PW. Chemokine expression of CCL2, CCL3, CCL5 and CXCL10 during early inflammatory tendon healing precedes nerve regeneration: an immuno-histochemical study in the rat. Knee Surg Sports Traumatol Arthrosc. 2014. [Epub ahead of print].

  23. Ackermann PW, Salo PT, Hart DA. Neuronal pathways in tendon healing. Front Biosci (Landmark Ed). 2009;14:5165–87. Review. PubMed PMID: 19482611.

    Article  CAS  PubMed  Google Scholar 

  24. Ackermann PW, Franklin SL, Dean BJ, Carr AJ, Salo PT, Hart DA. Neuronal pathways in tendon healing and tendinopathy–update. Front Biosci (Landmark Ed). 2014;1(19):1251–78.

    Article  Google Scholar 

  25. O’Brien EJ, Beveridge JE, Huebner KD, et al. Osteoarthritis develops in the operated joint of an ovine model following ACL reconstruction with immediate anatomic reattachment of the native ACL. J Orthop Res. 2013;31(1):35–43.

    Article  PubMed  Google Scholar 

  26. Turhan E, Doral MN, Atay AO, Demirel M. A giant extrasynovial osteochondroma in the infrapatellar fat pad: end stage Hoffa’s disease. Arch Orthop Trauma Surg. 2008;128(5):515–9.

    Article  PubMed  Google Scholar 

  27. Sun K, Tordjman J, Cle’ment K, Scherer PE. Fibrosis and adipose tissue dysfunction. Cell Metab. 2013;18(4):470–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Stramer BM, Mori R, Martin P. The inflammation-fibrosis link? A Jekyll and Hyde role for blood cells during wound repair. J Investig Dermatol. 2007;127(5):1009–17.

    Article  CAS  PubMed  Google Scholar 

  29. Clements KM, Ball AD, Jones HB, Brinckmann S, Read SJ, Murray F. Cellular and histopathological changes in the infrapatellar fat pad in the monoiodoacetate model of osteoarthritis pain. Osteoarthr Cartil. 2009;17(6):805–12.

    Article  CAS  PubMed  Google Scholar 

  30. Murakami S, Muneta T, Furuya K, Saito I, Miyasaka N, Yamamoto H. Immunohistologic analysis of synovium in infrapatellar fat pad after anterior cruciate ligament injury. Am J Sports Med. 1995;23(6):763–8.

    Article  CAS  PubMed  Google Scholar 

  31. Felson DT. Developments in the clinical understanding of osteoarthritis. Arthritis Res Ther. 2009;11:203.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Frank CB, Shrive NG, Lo IKY, Hart DA. Form and function of tendon and ligament. In: Buckwalter JA, Einhorn TA, Simon SR, editors. Orthopaedic basic science: biology and biomechanics of the musculoskeletal system. Rosemont: American Academy of Orthopaedic Surgeons; 2007.

    Google Scholar 

  33. Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: a disease of the joint as an organ [review]. Arthritis Rheum. 2012;64:1697–707.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Klein-Wieringa IR, Kloppenburg M, Bastiaansen-Jenniskens YM, Yusuf E, Kwekkeboom JC, El-Bannoudi H, et al. The infrapatellar fat pad of patients with osteoarthritis has an inflammatory phenotype. Ann Rheum Dis. 2011;70:851–7.

    Article  CAS  PubMed  Google Scholar 

  35. Gierman LM, Wopereis S, van El B, Verheij ER, der Vat Werff-van BJ, Bastiaansen-Jenniskens YM, van Osch GJ, Kloppenburg M, Stojanovic-Susulic V, Huizinga TW, Zuurmond AM. Metabolic profiling reveals differences in concentrations of oxylipins and fatty acids secreted by the infrapatellar fat pad of donors with end-stage osteoarthritis and normal donors. Arthritis Rheum. 2013;65(10):2606–14.

    CAS  PubMed  Google Scholar 

  36. Iwata M, Ochi H, Hara Y, et al. 2013 Initial responses of articular tissues in a murine high fat diet induced osteoarthritis model: pivotal role of the IPFP as a cytokine fountain. PLoS One. 2013;8(4):e60706.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Clockaerts S, Bastiaansen-Jenniskens YM, Feijt C, et al. Cytokine production by infrapatellar fat pad can be stimulated by interleukin 1β and inhibited by peroxisome proliferator activated receptor α agonist. Ann Rheum Dis. 2012;71(6):1012–8.

    Article  CAS  PubMed  Google Scholar 

  38. Van Beeck A, Clockaerts S, Somville J, et al. Does infrapatellar fat pad resection in total knee arthroplasty impair clinical outcome? A systematic review. The Knee. 2013;20(4):226–31.

    Article  PubMed  Google Scholar 

  39. Pappa CA, Alexandrakis MG, Boula A, Psarakis FE, Kolovou A, Bantouna V, Stavroulaki E, Tsirakis G. Emerging roles of endoglin/CD105 and angiogenic cytokines for disease development and progression in multiple myeloma patients. Hematol Oncol. 2013;31(4):201–5.

    Article  CAS  PubMed  Google Scholar 

  40. Lim J, Hotchin NA. Signalling mechanisms of the leukocyte integrin alphaM-beta2: current and future perspectives. Biol Cell. 2012;104(11):631–40.

    Article  CAS  PubMed  Google Scholar 

  41. Blom AB, van Lent PE, Holthuysen AE, et al. Synovial lining macrophages mediate osteophyte formation during experimental osteoarthritis. Osteoarthr Cartil. 2004;12(8):627–35.

    Article  PubMed  Google Scholar 

  42. Van Lent PL, Blom AB, van der Kraan P, et al. Crucial role of synovial lining macrophages in the promotion of transforming growth factor beta-mediated osteophyte formation. Arthritis Rheum. 2004;50(1):103–11.

    Article  PubMed  Google Scholar 

  43. Summan M, Warren GL, Mercer RR, Chapman R, Hulderman T, Van Rooijen N, Simeonova PP. Macrophages and skeletal muscle regeneration: a clodronate-containing liposome depletion study. Am J Physiol Regul Integr Comp Physiol. 2006;290(6):R1488–95.

    Article  CAS  PubMed  Google Scholar 

  44. Bondesen BA, Mills ST, Kegley KM, Pavlath GK. The COX-2 pathway is essential during early stages of skeletal muscle regeneration. Am J Physiol Cell Physiol. 2004;287:C475–83.

    Article  CAS  PubMed  Google Scholar 

  45. Tanaka N, Sakahashi H, Sato E, et al. Influence of the infrapatellar fat pad resection in a synovectomy during total knee arthroplasty in patients with rheumatoid arthritis. J Arthroplast. 2003;18(7):897–902.

    Article  Google Scholar 

  46. Bastiaansen-Jenniskens YM, Clockaerts S, Feijt C. Infrapatellar fat pad of patients with end-stage osteoarthritis inhibits catabolic mediators in cartilage. Ann Rheum Dis. 2012;71(2):288–94.

    Article  CAS  PubMed  Google Scholar 

  47. Felimban R, Ye K, Traianedes K, Di Bella C, Crook J, Wallace GG, Quigley A, Choong PF, Myers DE. Differentiation of stem cells from human infrapatellar fat pad: characterization of cells undergoing chondrogenesis. Tissue Eng Part A. 2014;20(15–16):2213–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided for these studies through research grants from the Canadian Institutes for Health Research (MOP-9858 & IMH-120277) (CBF and NGS),The Arthritis Society (SOG-12-04), and an Alberta Innovates Health Solutions Team Grant in Osteoarthritis ((1) 20080170 (2) 200700596) (CBF, NGS and DAH) and Bridge Funding from the Cumming School of Medicine (DAH & NGS). NMS was supported through a studentship from the Alberta Innovates Health Solutions Team Grant in Osteoarthritis. BJH was supported through fellowships from The Arthritis Society and a University of Calgary Queen Elizabeth II Scholarship. NGS is a Killam Memorial Professor and CBF was a McCaig Professor at the McCaig Institute for Bone and Joint Health. The authors thank Leslie Jacques for excellent technical expertise.

Funding

The funds for these studies were obtained from public granting agencies such as Canadian Institutes for Health Research, The Arthritis Society, and an Alberta Innovates Health Solutions Team Grant in Osteoarthritis and Bridge Funding from Cumming School of Medicine. The authors state that there were no private sponsors for this study.

Conflict of interest

The authors declare that there are no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Hart.

Additional information

Responsible Editor: Jason J. McDougall.

Cyril B. Frank—Deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solbak, N.M., Heard, B.J., Achari, Y. et al. Alterations in Hoffa’s fat pad induced by an inflammatory response following idealized anterior cruciate ligament surgery. Inflamm. Res. 64, 615–626 (2015). https://doi.org/10.1007/s00011-015-0840-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-015-0840-y

Keywords

Navigation