Skip to main content
Log in

Inducible nitric oxide synthase inhibition reverses pulmonary arterial dysfunction in lung transplantation

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

Ischemia–reperfusion injury (IRI) after lung transplantation remains a significant cause of morbidity and mortality. Lung IRI induces nitric oxide synthesis (iNOS) and reactive nitrogen species, decreasing nitric oxide bioavailability. We hypothesized that ischemia-induced iNOS intensifies with reperfusion and contributes to IRI-induced pulmonary arterial regulatory dysfunction, which may lead to early graft failure and cause pulmonary edema. The aim of this study was to determine whether ischemia–reperfusion alters inducible and endothelial nitric oxide synthase expression, potentially affecting pulmonary perfusion. We further evaluated the role of iNOS in post-transplantation pulmonary arterial disorder.

Methods

We randomized 32 Sprague–Dawley rats into two groups. The control group was given a sham operation whilst the experimental group received orthotropic lung transplants with a modified three-cuff technique. Changes in lung iNOS, and endothelial nitric oxide synthase expression were measured after lung transplantation by enzyme-linked immunosorbent assay (ELISA). Vasoconstriction in response to exogenous phenylephrine and vasodilation in response to exogenous acetylcholine of pulmonary arterial rings were measured in vitro as a measure of vascular dysfunction. To elucidate the roles of iNOS in regulating vascular function, an iNOS activity inhibitor (N6-(1-iminoethyl)-L-lysine, L-NIL) was used to treat isolated arterial rings. In order to test whether iNOS inhibition has a therapeutic effect, we further used L-NIL to pre-treat transplanted lungs and then measured post-transplantation arterial responses.

Results

Lung transplantation caused upregulation of iNOS expression. This was also accompanied by suppression of both vasoconstriction and vasodilation of arterial rings from transplanted lungs. Removal of endothelium did not interfere with the contraction of pulmonary arterial rings from transplanted lungs. In contrast, iNOS inhibition rescued the vasoconstriction response to exogenous phenylephrine of pulmonary arterial rings from transplanted lungs. In addition, lung transplantation led to suppression of PaO2/FiO2 ratio, increased intrapulmonary shunt (Q s/Q t), and increase of lung wet to dry ratio (W/D), malondialdehyde and myeloperoxidase levels, all of which were reversed upon iNOS inhibition. Furthermore, inhibition of iNOS significantly rescued vascular function and alleviated edema and inflammatory cell infiltration in the transplanted lung.

Conclusions

Our data suggest that lung transplantation causes upregulation of iNOS expression, and pulmonary vascular dysfunction. iNOS inhibition reverses the post-transplantational pulmonary vascular dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thabut G, Christie JD, Kremers WK, Fournier M, Halpern SD. Survival differences following lung transplantation among US transplant centers. JAMA. 2010;304:53–60.

    Article  CAS  PubMed  Google Scholar 

  2. Fiser SM, Tribble CG, Long SM, Kaza AK, Kern JA, Jones DR, et al. Ischemia-reperfusion injury after lung transplantation increases risk of late bronchiolitis obliterans syndrome. Ann Thorac Surg. 2002;73:1041–7 discussion 1047–8.

    Article  PubMed  Google Scholar 

  3. Reignier J, Mazmanian M, Detruit H, Chapelier A, Weiss M, Libert JM, et al. Reduction of ischemia-reperfusion injury by pentoxifylline in the isolated rat lung. Paris-Sud University Lung Transplantation Group. Am J Respir Crit Care Med. 1994;150:342–7.

    Article  CAS  PubMed  Google Scholar 

  4. Chapelier A, Reignier J, Mazmanian M, Detruit H, Dartevelle P, Parquin F, et al. Pentoxifylline and lung ischemia-reperfusion injury: application to lung transplantation. Universite Paris-Sud Lung Transplant Group. J Cardiovasc Pharmacol. 1995;25(Suppl 2):S130–3.

    Article  CAS  PubMed  Google Scholar 

  5. Yerebakan C, Ugurlucan M, Bayraktar S, Bethea BT, Conte JV. Effects of inhaled nitric oxide following lung transplantation. J Card Surg. 2009;24:269–74.

    Article  PubMed  Google Scholar 

  6. Shen W, Zhang X, Zhao G, Wolin MS, Sessa W, Hintze TH. Nitric oxide production and NO synthase gene expression contribute to vascular regulation during exercise. Med Sci Sports Exerc. 1995;27:1125–34.

    Article  CAS  PubMed  Google Scholar 

  7. Geller DA, Billiar TR. Molecular biology of nitric oxide synthases. Cancer Metastasis Rev. 1998;17:7–23.

    Article  CAS  PubMed  Google Scholar 

  8. Pfeilschifter J, Eberhardt W, Huwiler A. Nitric oxide and mechanisms of redox signalling: matrix and matrix-metabolizing enzymes as prime nitric oxide targets. Eur J Pharmacol. 2001;429:279–86.

    Article  CAS  PubMed  Google Scholar 

  9. Liu M, Tremblay L, Cassivi SD, Bai XH, Mourgeon E, Pierre AF, et al. Alterations of nitric oxide synthase expression and activity during rat lung transplantation. Am J Physiol Lung Cell Mol Physiol. 2000;278:L1071–81.

    CAS  PubMed  Google Scholar 

  10. Anggard E. Nitric oxide: mediator, murderer, and medicine. Lancet. 1994;343:1199–206.

    Article  CAS  PubMed  Google Scholar 

  11. Sedoris KC, Gozal E, Ovechkin AV, Theile AR, Roberts AM. Interplay of endothelial and inducible nitric oxide synthases modulates the vascular response to ischaemia-reperfusion in the rabbit lung. Acta Physiol. 2012;204:331–43.

    Article  CAS  Google Scholar 

  12. Ovechkin AV, Lominadze D, Sedoris KC, Robinson TW, Tyagi SC, Roberts AM. Lung ischemia-reperfusion injury: implications of oxidative stress and platelet-arteriolar wall interactions. Arch Physiol Biochem. 2007;113:1–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Yaylak F, Canbaz H, Caglikulekci M, Dirlik M, Tamer L, Ogetman Z, et al. Liver tissue inducible nitric oxide synthase (iNOS) expression and lipid peroxidation in experimental hepatic ischemia reperfusion injury stimulated with lipopolysaccharide: the role of aminoguanidine. J Surg Res. 2008;148:214–23.

    Article  CAS  PubMed  Google Scholar 

  14. Kadkhodaee M, Zahmatkesh M, Sadeghipour HR, Eslamifar A, Taeb J, Shams A, et al. Proteinuria is reduced by inhibition of inducible nitric oxide synthase in rat renal ischemia-reperfusion injury. Transpl Proc. 2009;41:2907–9.

    Article  CAS  Google Scholar 

  15. Chlopicki S, Olszanecki R, Jakubowski A, Lomnicka M, Gryglewski RJ. L-N6-(1-iminoethyl)-lysine (L-NIL) but not S-methylisothiourea sulphate (SMT) displays selectivity towards NOS-2. Pol J Pharmacol. 1999;51:443–7.

    CAS  PubMed  Google Scholar 

  16. Wu J, Wei J, You X, Chen X, Zhu H, Zhu X, et al. Inhibition of hydrogen sulfide generation contributes to lung injury after experimental orthotopic lung transplantation. J Surg Res. 2013;182:e25–33.

    Article  CAS  PubMed  Google Scholar 

  17. Kohn DF. Anesthesia and analgesia in laboratory animals. San Diego: Academic Press; 1997.

    Google Scholar 

  18. Sun X, Ma S, Zang YM, Lu SY, Guo HT, Bi H, et al. Vasorelaxing effect of U50,488H in pulmonary artery and underlying mechanism in rats. Life Sci. 2006;78:2516–22.

    Article  CAS  PubMed  Google Scholar 

  19. Cardell LO, Hjert O, Uddman R. The induction of nitric oxide-mediated relaxation of human isolated pulmonary arteries by PACAP. Br J Pharmacol. 1997;120:1096–100.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Anaid S, Petkov V, Baykuscheva-Gentscheva T, Hoeger H, Painsipp E, Holzer P, et al. Involvement of endothelial NO in the dilator effect of VIP on rat isolated pulmonary artery. Regul Pept. 2007;139:102–8.

    Article  Google Scholar 

  21. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288:373–6.

    Article  CAS  PubMed  Google Scholar 

  22. Stojic D, Radenkovic M, Krsljak E, Popovic J, Pesic S, Grbovic L. Influence of the endothelium on the vasorelaxant response to acetylcholine and vasoactive intestinal polypeptide in the isolated rabbit facial artery. Eur J Oral Sci. 2003;111:137–43.

    Article  CAS  PubMed  Google Scholar 

  23. Jin Y, Zhao X, Li H, Wang Z, Wang D. Effects of sevoflurane and propofol on the inflammatory response and pulmonary function of perioperative patients with one-lung ventilation. Exp Ther Med. 2013;6:781–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Alexiou K, Matschke K, Westphal A, Stangl K, Dschietzig T. Relaxin is a candidate drug for lung preservation: relaxin-induced protection of rat lungs from ischemia-reperfusion injury. J Heart Lung Transplant. 2010;29:454–60.

    Article  PubMed  Google Scholar 

  25. Yang T, Mao YF, Liu SQ, Hou J, Cai ZY, Hu JY, et al. Protective effects of the free radical scavenger edaravone on acute pancreatitis-associated lung injury. Eur J Pharmacol. 2010;630:152–7.

    Article  CAS  PubMed  Google Scholar 

  26. Papalambros E, Sigala F, Georgopoulos S, Paraskevas KI, Andreadou I, Menenakos X, et al. Malondialdehyde as an indicator of oxidative stress during abdominal aortic aneurysm repair. Angiology. 2007;58:477–82.

    Article  CAS  PubMed  Google Scholar 

  27. Dodd-o JM, Hristopoulos ML, Faraday N, Pearse DB. Effect of ischemia and reperfusion without airway occlusion on vascular barrier function in the in vivo mouse lung. J Appl Physiol. 2003;95:1971–8.

    PubMed  Google Scholar 

  28. Chu Y, Wu YC, Chou YC, Chueh HY, Liu HP, Chu JJ, et al. Endothelium-dependent relaxation of canine pulmonary artery after prolonged lung graft preservation in University of Wisconsin solution: role of l-arginine supplementation. J Heart Lung Transplant. 2004;23:592–8.

    Article  PubMed  Google Scholar 

  29. Carden DL, Granger DN. Pathophysiology of ischaemia-reperfusion injury. J Pathol. 2000;190:255–66.

    Article  CAS  PubMed  Google Scholar 

  30. Fullerton DA, Mitchell MB, McIntyre RC Jr, Banerjee A, Campbell DN, Harken AH, et al. Cold ischemia and reperfusion each produce pulmonary vasomotor dysfunction in the transplanted lung. J Thorac Cardiovasc Surg. 1993;106:1213–7.

    CAS  PubMed  Google Scholar 

  31. Darra E, Rungatscher A, Carcereri de Prati A, Podesser BK, Faggian G, Scarabelli T, et al. Dual modulation of nitric oxide production in the heart during ischaemia/reperfusion injury and inflammation. Thromb Haemost. 2010;104:200–6.

    Article  CAS  PubMed  Google Scholar 

  32. Sedoris KC, Ovechkin AV, Gozal E, Roberts AM. Differential effects of nitric oxide synthesis on pulmonary vascular function during lung ischemia-reperfusion injury. Arch Physiol Biochem. 2009;115:34–46.

    Article  CAS  PubMed  Google Scholar 

  33. Raj JU, Toga H, Ibe BO, Anderson J. Effects of endothelin, platelet activating factor and thromboxane A2 in ferret lungs. Respir Physiol. 1992;88:129–40.

    Article  CAS  PubMed  Google Scholar 

  34. Shirai M, Ikeda S, Min KY, Shimouchi A, Kawaguchi AT, Ninomiya I. Segmental differences in vasodilatation due to basal NO release in in vivo cat pulmonary vessels. Respir Physiol. 1999;116:159–69.

    Article  CAS  PubMed  Google Scholar 

  35. Shirai M, Shimouchi A, Kawaguchi AT, Sunagawa K, Ninomiya I. Inhaled nitric oxide: diameter response patterns in feline small pulmonary arteries and veins. Am J Physiol. 1996;270:H974–80.

    CAS  PubMed  Google Scholar 

  36. Ikeda S, Shirai M, Shimouchi A, Min KY, Ohsawa N, Ninomiya I. Pulmonary microvascular responses to inhaled prostacyclin, nitric oxide, and their combination in anesthetized cats. Jpn J Physiol. 1999;49:89–98.

    Article  CAS  PubMed  Google Scholar 

  37. Watson KE, Dovi WF, Conhaim RL. Evidence for active control of perfusion within lung microvessels. J Appl Physiol. 2012;112:48–53.

    Article  CAS  PubMed  Google Scholar 

  38. Roberts AM, Slaaf DW, Joshua IG. Potentiation of pulmonary arteriolar vasoconstriction to endothelin-1 by inhibition of nitric oxide synthesis in the intact lung. Microcirculation. 1998;5:289–98.

    Article  CAS  PubMed  Google Scholar 

  39. Sauzeau V, Rolli-Derkinderen M, Lehoux S, Loirand G, Pacaud P. Sildenafil prevents change in RhoA expression induced by chronic hypoxia in rat pulmonary artery. Circ Res. 2003;93:630–7.

    Article  CAS  PubMed  Google Scholar 

  40. Delbin MA, Moraes C, Camargo E, Mussi RK, Antunes E, de Nucci G, et al. Influence of physical preconditioning on the responsiveness of rat pulmonary artery after pulmonary ischemia/reperfusion. Comp Biochem Physiol A Mol Integr Physiol. 2007;147:793–8.

    Article  PubMed  Google Scholar 

  41. Shibamoto T, Wang HG, Yamaguchi Y, Hayashi T, Saeki Y, Tanaka S, et al. Effects of thromboxane A2 analogue on vascular resistance distribution and permeability in isolated blood-perfused dog lungs. Lung. 1995;173:209–21.

    Article  CAS  PubMed  Google Scholar 

  42. Houweling B, Merkus D, Dekker MM, Duncker DJ. Nitric oxide blunts the endothelin-mediated pulmonary vasoconstriction in exercising swine. J Physiol. 2005;568:629–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Sauvageau S, Thorin E, Caron A, Dupuis J. Evaluation of endothelin-1-induced pulmonary vasoconstriction following myocardial infarction. Exp Biol Med (Maywood). 2006;231:840–6.

    CAS  Google Scholar 

  44. Winn R, Harlan J, Nadir B, Harker L, Hildebrandt J. Thromboxane A2 mediates lung vasoconstriction but not permeability after endotoxin. J Clin Invest. 1983;72:911–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Turnage RH, LaNoue JL, Kadesky KM, Meng Y, Myers SI. Thromboxane A2 mediates increased pulmonary microvascular permeability after intestinal reperfusion. J Appl Physiol. 1997;82:592–8.

    CAS  PubMed  Google Scholar 

  46. Friedman M, Johnson RG, Wang SY, Dai HB, Thurer RL, Weintraub RM, et al. Pulmonary microvascular responses to protamine and histamine. Effects of cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1994;108:1092–9.

    CAS  PubMed  Google Scholar 

  47. Coggins MP, Bloch KD. Nitric oxide in the pulmonary vasculature. Arterioscler Thromb Vasc Biol. 2007;27:1877–85.

    Article  CAS  PubMed  Google Scholar 

  48. Liaudet L, Soriano FG, Szabo C. Biology of nitric oxide signaling. Crit Care Med. 2000;28:N37–52.

    Article  CAS  PubMed  Google Scholar 

  49. Rubbo H, Tarpey M, Freeman BA. Nitric oxide and reactive oxygen species in vascular injury. Biochem Soc Symp. 1995;61:33–45.

    CAS  PubMed  Google Scholar 

  50. Ilangovan G, Osinbowale S, Bratasz A, Bonar M, Cardounel AJ, Zweier JL, et al. Heat shock regulates the respiration of cardiac H9c2 cells through upregulation of nitric oxide synthase. Am J Physiol Cell Physiol. 2004;287:C1472–81.

    Article  CAS  PubMed  Google Scholar 

  51. Kupatt C, Dessy C, Hinkel R, Raake P, Daneau G, Bouzin C, et al. Heat shock protein 90 transfection reduces ischemia-reperfusion-induced myocardial dysfunction via reciprocal endothelial NO synthase serine 1177 phosphorylation and threonine 495 dephosphorylation. Arterioscler Thromb Vasc Biol. 2004;24:1435–41.

    Article  CAS  PubMed  Google Scholar 

  52. Fujimura N, Jitsuiki D, Maruhashi T, Mikami S, Iwamoto Y, Kajikawa M, et al. Geranylgeranylacetone, heat shock protein 90/AMP-activated protein kinase/endothelial nitric oxide synthase/nitric oxide pathway, and endothelial function in humans. Arterioscler Thromb Vasc Biol. 2012;32:153–60.

    Article  CAS  PubMed  Google Scholar 

  53. Takahashi S, Mendelsohn ME. Calmodulin-dependent and -independent activation of endothelial nitric-oxide synthase by heat shock protein 90. J Biol Chem. 2003;278:9339–44.

    Article  CAS  PubMed  Google Scholar 

  54. Ovechkin AV, Lominadze D, Sedoris KC, Gozal E, Robinson TW, Roberts AM. Inhibition of inducible nitric oxide synthase attenuates platelet adhesion in subpleural arterioles caused by lung ischemia-reperfusion in rabbits. J Appl Physiol. 2005;99:2423–32.

    Article  CAS  PubMed  Google Scholar 

  55. Chatterjee PK, Patel NS, Kvale EO, Cuzzocrea S, Brown PA, Stewart KN, et al. Inhibition of inducible nitric oxide synthase reduces renal ischemia/reperfusion injury. Kidney Int. 2002;61:862–71.

    Article  CAS  PubMed  Google Scholar 

  56. Wei T, Chen C, Hou J, Xin W, Mori A. Nitric oxide induces oxidative stress and apoptosis in neuronal cells. Biochim Biophys Acta. 2000;1498:72–9.

    Article  CAS  PubMed  Google Scholar 

  57. Gursoy-Ozdemir Y, Bolay H, Saribas O, Dalkara T. Role of endothelial nitric oxide generation and peroxynitrite formation in reperfusion injury after focal cerebral ischemia. Stroke. 2000;31:1974–80 discussion 1981.

    Article  CAS  PubMed  Google Scholar 

  58. Hirabayashi H, Takizawa S, Fukuyama N, Nakazawa H, Shinohara Y. Nitrotyrosine generation via inducible nitric oxide synthase in vascular wall in focal ischemia-reperfusion. Brain Res. 2000;852:319–25.

    Article  CAS  PubMed  Google Scholar 

  59. Lakshminrusimha S, Suresh MV, Knight PR, Gugino SF, Davidson BA, Helinski JD, et al. Role of pulmonary artery reactivity and nitric oxide in injury and inflammation following lung contusion. Shock. 2013;39:278–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Joles JA, Vos IH, Grone HJ, Rabelink TJ. Inducible nitric oxide synthase in renal transplantation. Kidney Int. 2002;61:872–5.

    Article  CAS  PubMed  Google Scholar 

  61. Goldstein S, Merenyi G. The chemistry of peroxynitrite: implications for biological activity. Methods Enzymol. 2008;436:49–61.

    Article  CAS  PubMed  Google Scholar 

  62. Feelisch M. The chemical biology of nitric oxide: an outsider’s reflections about its role in osteoarthritis. Osteoarthritis Cartilage. 2008;16(Suppl 2):S3–13.

    Article  PubMed  Google Scholar 

  63. Wolin MS. Interactions of oxidants with vascular signaling systems. Arterioscler Thromb Vasc Biol. 2000;20:1430–42.

    Article  CAS  PubMed  Google Scholar 

  64. Balazy M, Kaminski PM, Mao K, Tan J, Wolin MS. S-Nitroglutathione, a product of the reaction between peroxynitrite and glutathione that generates nitric oxide. J Biol Chem. 1998;273:32009–15.

    Article  CAS  PubMed  Google Scholar 

  65. Shah MR, Wedgwood S, Czech L, Kim GA, Lakshminrusimha S, Schumacker PT, et al. Cyclic stretch induces inducible nitric oxide synthase and soluble guanylate cyclase in pulmonary artery smooth muscle cells. Int J Mol Sci. 2013;14:4334–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Koesling D, Russwurm M, Mergia E, Mullershausen F, Friebe A. Nitric oxide-sensitive guanylyl cyclase: structure and regulation. Neurochem Int. 2004;45:813–9.

    Article  CAS  PubMed  Google Scholar 

  67. Zheng B, Zheng T, Wang L, Chen X, Shi C, Zhao S. Aminoguanidine inhibition of iNOS activity ameliorates cerebral vasospasm after subarachnoid hemorrhage in rabbits via restoration of dysfunctional endothelial cells. J Neurol Sci. 2010;295:97–103.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Wei-gang Guo, Dr. Qiang Tan and Yi-qingYang for their advice and helpful suggestions. This work was supported by Shanghai Natural Science Foundation No. 12ZR1428700, “1050” Foundation for the Talents by Shanghai Chest Hospital and Shanghai Joint development project for Municipal hospitals (SHDC12010222).

Dr. Wu and Zhu contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei-ying Xu.

Additional information

Responsible Editor: John Di Battista.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Jx., Zhu, Hw., Chen, X. et al. Inducible nitric oxide synthase inhibition reverses pulmonary arterial dysfunction in lung transplantation. Inflamm. Res. 63, 609–618 (2014). https://doi.org/10.1007/s00011-014-0733-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-014-0733-5

Keywords

Navigation