Skip to main content

Advertisement

Log in

Activated macrophage-like synoviocytes are resistant to endoplasmic reticulum stress-induced apoptosis in antigen-induced arthritis

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

To explore the characteristic expression of endoplasmic reticulum (ER) stress protein in antigen-induced arthritis models and the role of ER stress in arthritis.

Methods

Effective animal models of rheumatoid arthritis in rabbits and rats were induced by methylated bovine serum albumin and Freund’s complete adjuvant. Pathological changes were assessed by magnetic resonance imaging and histological analysis. The expression and localization of ER stress proteins in synovium and peritoneal macrophages (PMΦ) were analyzed by double immunofluorescence staining. RT-PCR was performed to detect mRNA expression of ER stress-related genes. Tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) levels in synoviocytes were measured by RT-PCR and radioimmunoassay.

Results

We found that the ER stress marker BiP was highly up-regulated in arthritis synovium and extensively expressed in fibroblast-like synoviocytes (FLS) and macrophage-like synoviocytes (MLS). The expression of the pro-apoptotic factor CHOP/GADD153 was slightly elevated in inflammatory synovium and mainly localized in FLS, but insignificant in MLS. Unexpectedly, increased expression of CHOP was observed in PMΦ in arthritis rats. Likewise, cleaved caspase-3 was rarely expressed in MLS. In addition, induction of ER stress by tunicamycin resulted in significantly increased expression of pro-inflammatory molecules such as IL-1β and TNF-α in cultured inflammatory FLS.

Conclusion

Differential activation of the ER stress proteins in synovium MLS may contribute to the resistance of synoviocytes to ER stress-induced apoptosis. Furthermore, ER stress is a potential mediator of arthritis inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bijlsma JW. Disease control with glucocorticoid therapy in rheumatoid arthritis. Rheumatology (Oxford). 2012;51(Suppl 4):9–13.

    Google Scholar 

  2. Korb A, Pavenstadt H, Pap T. Cell death in rheumatoid arthritis. Apoptosis. 2009;14:447–54.

    Article  PubMed  Google Scholar 

  3. Tak PP, Kalden JR. Advances in rheumatology: new targeted therapeutics. Arthritis Res Ther. 2011;13(Suppl 1):S5.

    PubMed Central  PubMed  CAS  Google Scholar 

  4. Yamasaki S, Yagishita N, Tsuchimochi K, Kato Y, Sasaki T, Amano T, et al. Resistance to endoplasmic reticulum stress is an acquired cellular characteristic of rheumatoid synovial cells. Int J Mol Med. 2006;18:113–7.

    PubMed  Google Scholar 

  5. Gao B, Lee SM, Chen A, Zhang J, Zhang DD, Kannan K, et al. Synoviolin promotes IRE1 ubiquitination and degradation in synovial fibroblasts from mice with collagen-induced arthritis. EMBO Rep. 2008;9:480–5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Kaser A, Blumberg RS. Endoplasmic reticulum stress and intestinal inflammation. Mucosal Immunol. 2009;21(3):156–63.

    CAS  Google Scholar 

  7. Zhang K, Kaufman RJ. From endoplasmic-reticulum stress to the inflammatory response. Nature. 2008;454:455–62.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. 2003;11:619–33.

    Article  PubMed  CAS  Google Scholar 

  9. Bartok B, Firestein GS. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol Rev. 2010;233:233–55.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 2000;287:664–6.

    Article  PubMed  CAS  Google Scholar 

  11. Deng J, Lu PD, Zhang Y, Scheuner D, Kaufman RJ, Sonenberg N, et al. Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2. Mol Cell Biol. 2004;24:10161–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Zhang K, Shen X, Wu J, Sakaki K, Saunders T, Rutkowski DT, et al. Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell. 2006;124:587–99.

    Article  PubMed  CAS  Google Scholar 

  13. Blass S, Union A, Raymackers J, Schumann F, Ungethum U, Muller-Steinbach S, et al. The stress protein BiP is overexpressed and is a major B and T cell target in rheumatoid arthritis. Arthritis Rheum. 2001;44:761–71.

    Article  PubMed  CAS  Google Scholar 

  14. Corrigall VM, Bodman-Smith MD, Fife MS, Canas B, Myers LK, Wooley P, et al. The human endoplasmic reticulum molecular chaperone BiP is an autoantigen for rheumatoid arthritis and prevents the induction of experimental arthritis. J Immunol. 2001;166:1492–8.

    Article  PubMed  CAS  Google Scholar 

  15. Amano T, Yamasaki S, Yagishita N, Tsuchimochi K, Shin H, Kawahara K, et al. Synoviolin/Hrd1, an E3 ubiquitin ligase, as a novel pathogenic factor for arthropathy. Genes Dev. 2003;17:2436–49.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Panayi GS, Corrigall VM. BiP regulates autoimmune inflammation and tissue damage. Autoimmun Rev. 2006;5:140–2.

    Article  PubMed  CAS  Google Scholar 

  17. Dawson J, Gustard S, Beckmann N. High-resolution three-dimensional magnetic resonance imaging for the investigation of knee joint damage during the time course of antigen-induced arthritis in rabbits. Arthritis Rheum. 1999;42:119–28.

    Article  PubMed  CAS  Google Scholar 

  18. Comar JF, Babeto de Sa-Nakanishi A, de Oliveira AL, Marques Nogueira Wendt M, Bersani Amado CA, Ishii Iwamoto EL, et al. Oxidative state of the liver of rats with adjuvant-induced arthritis. Free Radic Biol Med 2013; 58:144-53.

  19. Yoo SA, You S, Yoon HJ, Kim DH, Kim HS, Lee K, et al. A novel pathogenic role of the ER chaperone GRP78/BiP in rheumatoid arthritis. J Exp Med. 2012;209:871–86.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 1998;12:982–95.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Ohoka N, Yoshii S, Hattori T, Onozaki K, Hayashi H. TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death. EMBO J. 2005;24:1243–55.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Shin YJ, Han SH, Kim DS, Lee GH, Yoo WH, Kang YM, et al. Autophagy induction and CHOP under-expression promotes survival of fibroblasts from rheumatoid arthritis patients under endoplasmic reticulum stress. Arthritis Res Ther. 2010;12:19.

    Article  CAS  Google Scholar 

  23. Yagishita N, Aratani S, Leach C, Amano T, Yamano Y, Nakatani K, et al. RING-finger type E3 ubiquitin ligase inhibitors as novel candidates for the treatment of rheumatoid arthritis. Int J Mol Med. 2012;30:1281–6.

    PubMed  CAS  Google Scholar 

  24. Nugent AE, Speicher DM, Gradisar I, McBurney DL, Baraga A, Doane KJ, et al. Advanced osteoarthritis in humans is associated with altered collagen VI expression and upregulation of ER-stress markers Grp78 and bag-1. J Histochem Cytochem. 2009;57:923–31.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Corrigall VM, Bodman-Smith MD, Brunst M, Cornell H, Panayi GS. Inhibition of antigen-presenting cell function and stimulation of human peripheral blood mononuclear cells to express an antiinflammatory cytokine profile by the stress protein BiP: relevance to the treatment of inflammatory arthritis. Arthritis Rheum. 2004;50:1164–71.

    Article  PubMed  CAS  Google Scholar 

  26. Tajiri S, Oyadomari S, Yano S, Morioka M, Gotoh T, Hamada JI, et al. Ischemia-induced neuronal cell death is mediated by the endoplasmic reticulum stress pathway involving CHOP. Cell Death Differ. 2004;11:403–15.

    Article  PubMed  CAS  Google Scholar 

  27. Pino SC, O’Sullivan-Murphy B, Lidstone EA, Yang C, Lipson KL, Jurczyk A, et al. CHOP mediates endoplasmic reticulum stress-induced apoptosis in Gimap5-deficient T cells. PLoS One. 2009;4:5468.

    Article  CAS  Google Scholar 

  28. Ron D, Habener JF. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev. 1992;6:439–53.

    Article  PubMed  CAS  Google Scholar 

  29. Strand V, Kavanaugh AF. The role of interleukin-1 in bone resorption in rheumatoid arthritis. Rheumatology (Oxford). 2004;43(Suppl 3):10–6.

    Google Scholar 

  30. Kaneko M, Tomita T, Nakase T, Ohsawa Y, Seki H, Takeuchi E, et al. Expression of proteinases and inflammatory cytokines in subchondral bone regions in the destructive joint of rheumatoid arthritis. Rheumatology (Oxford). 2001;40:247–55.

    Article  CAS  Google Scholar 

  31. Isomaki P, Punnonen J. Pro- and anti-inflammatory cytokines in rheumatoid arthritis. Ann Med. 1997;29:499–507.

    Article  PubMed  CAS  Google Scholar 

  32. Garg AD, Kaczmarek A, Krysko O, Vandenabeele P, Krysko DV, Agostinis P. ER stress-induced inflammation: does it aid or impede disease progression? Trends Mol Med. 2012;18:589–98.

    Article  PubMed  CAS  Google Scholar 

  33. Connor AM, Mahomed N, Gandhi R, Keystone EC, Berger SA. TNFalpha modulates protein degradation pathways in rheumatoid arthritis synovial fibroblasts. Arthritis Res Ther. 2012;14:62.

    Article  CAS  Google Scholar 

  34. Woo CW, Cui D, Arellano J, Dorweiler B, Harding H, Fitzgerald KA, Ron D, Tabas I. Adaptive suppression of the ATF4-CHOP branch of the unfolded protein response by Toll-like receptor signalling. Nat Cell Biol. 2009;11(12):1473–80.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from National Natural Science Foundation of China (No. 81173074, 91129729) to SYX and (No. 81302755) to FLJ, from Research Fund for the Doctoral Program of Higher Education of China (No. 20113420110004, 20123420120002), and supported by Anhui Provincial Natural Science Foundation (11040606Q14) to FLJ.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Li or Yu-Xian Shen.

Additional information

Responsible Editor: Ikuo Morita.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig S1. Expression of BiP in normal synovium. ad Double labeling of BiP (green) and α-SMA (red). eh Double labeling of BiP (green) and CD68 (red). Scale bar = 50 μm.

Fig S2. Expression of CHOP in normal synovium. ad Double labeling of CHOP (red) and α-SMA (green). eh Double labeling of CHOP (red) and CD68 (green). Scale bar = 50 μm.

Supplementary material 1 (TIFF 2559 kb)

Supplementary material 2 (TIFF 2409 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, LJ., Jiang, TC., Zhou, CY. et al. Activated macrophage-like synoviocytes are resistant to endoplasmic reticulum stress-induced apoptosis in antigen-induced arthritis. Inflamm. Res. 63, 335–346 (2014). https://doi.org/10.1007/s00011-013-0705-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-013-0705-1

Keywords

Navigation