Skip to main content

Advertisement

Log in

High glucose increases nitric oxide generation in lipopolysaccharide-activated macrophages by enhancing activity of protein kinase C-α/δ and NF-κB

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Although several mechanisms by which hyperglycemia modulate inflammation have been proposed, it remains unclear how hyperglycemia regulates inflammation induced by lipopolysaccharide (LPS).

Methods

We hypothesized that hyperglycemia might interplay with LPS to modulate the generation of an inflammatory mediator. RAW 264.7 macrophages cultured in medium containing either normal glucose (5.5-mM) or high glucose (HG) (15- and 25-mM) were treated with LPS. The nitric oxide (NO) generation, inducible NO synthase (iNOS) expression and cytokine release were then quantified by Griess reaction, western blot, and enzyme-linked immunosorbent assay (ELISA) respectively. The effect of HG on the activation of kinase and Nuclear Factor-Kappa B (NF-κB) were measured by western blot and NF-κB reporter assay respectively.

Results

Without LPS stimulation, HG alone did not induce NO generation and cytokine secretion; but LPS-induced NO generation, iNOS expression, and interleukin-1beta (IL-1β) secretion were higher in HG-cultured cells than in normal glucose-cultured cells. In contrast, LPS-induced interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) secretion were lower in HG-cultured cells than in normal glucose-cultured cells. Furthermore, HG increased iNOS expression and NO generation by enhancing phosphorylation levels of protein kinase C-alpha (PKC-α), protein kinase C-delta (PKC-δ), and p38 phosphorylation and NF-κB transcriptional activity.

Conclusions

This study revealed a possible role of PKC-α and PKC-δ potentially involved in diabetes-promoted inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860–7.

    Article  PubMed  CAS  Google Scholar 

  2. Muller S, Martin S, Koenig W, Hanifi-Moghaddam P, Rathmann W, Haastert B, et al. Impaired glucose tolerance is associated with increased serum concentrations of interleukin 6 and co-regulated acute-phase proteins but not TNF-alpha or its receptors. Diabetologia. 2002;45:805–12.

    Article  PubMed  CAS  Google Scholar 

  3. Pickup JC, Chusney GD, Thomas SM, Burt D. Plasma interleukin-6, tumour necrosis factor alpha and blood cytokine production in type 2 diabetes. Life Sci. 2000;67:291–300.

    Article  PubMed  CAS  Google Scholar 

  4. Bank N, Aynedjian HS. Role of EDRF (nitric oxide) in diabetic renal hyperfiltration. Kidney Int. 1993;43:1306–12.

    Article  PubMed  CAS  Google Scholar 

  5. Tolins JP, Shultz PJ, Raij L, Brown DM, Mauer SM. Abnormal renal hemodynamic response to reduced renal perfusion pressure in diabetic rats: role of NO. Am J Physiol. 1993;265:F886–95.

    PubMed  CAS  Google Scholar 

  6. Dasu MR, Devaraj S, Zhao L, Hwang DH, Jialal I. High glucose induces toll-like receptor expression in human monocytes: mechanism of activation. Diabetes. 2008;57:3090–8.

    Article  PubMed  CAS  Google Scholar 

  7. Dasu MR, Devaraj S, Jialal I. High glucose induces IL-1beta expression in human monocytes: mechanistic insights. Am J Physiol Endocrinol Metab. 2007;293:E337–46.

    Article  PubMed  CAS  Google Scholar 

  8. Shanmugam N, Gaw Gonzalo IT, Natarajan R. Molecular mechanisms of high glucose-induced cyclooxygenase-2 expression in monocytes. Diabetes. 2004;53:795–802.

    Article  PubMed  CAS  Google Scholar 

  9. Shanmugam N, Reddy MA, Guha M, Natarajan R. High glucose-induced expression of proinflammatory cytokine and chemokine genes in monocytic cells. Diabetes. 2003;52:1256–64.

    Article  PubMed  CAS  Google Scholar 

  10. Guha M, Bai W, Nadler JL, Natarajan R. Molecular mechanisms of tumor necrosis factor alpha gene expression in monocytic cells via hyperglycemia-induced oxidant stress-dependent and -independent pathways. J Biol Chem. 2000;275:17728–39.

    Article  PubMed  CAS  Google Scholar 

  11. de Souza LF, Jardim FR, Sauter IP, de Souza MM, Bernard EA. High glucose increases RAW 264.7 macrophages activation by lipoteichoic acid from Staphylococcus aureus. Clin Chim Acta. 2008;398:130–3.

    Article  PubMed  Google Scholar 

  12. Lo CJ. Upregulation of cyclooxygenase-II gene and PGE2 production of peritoneal macrophages in diabetic rats. J Surg Res. 2005;125:121–7.

    Article  PubMed  CAS  Google Scholar 

  13. Smitherman KO, Peacock JE Jr. Infectious emergencies in patients with diabetes mellitus. Med Clin North Am. 1995;9(1):53–77.

    Google Scholar 

  14. Hill JR, Kwon G, Marshall CA, McDaniel ML. Hyperglycemic levels of glucose inhibit interleukin 1 release from RAW 264.7 murine macrophages by activation of protein kinase C. J Biol Chem. 1998;273:3308–13.

    Article  PubMed  CAS  Google Scholar 

  15. Tseng CC, Hattori Y, Kasai K, Nakanishi N, Shimoda S. Decreased production of nitric oxide by LPS-treated J774 macrophages in high-glucose medium. Life Sci. 1997;60(7):PL99–106.

    Article  PubMed  CAS  Google Scholar 

  16. Iwata H, Soga Y, Meguro M, Yoshizawa S, Okada Y, Iwamoto Y, et al. High glucose up-regulates lipopolysaccharide-stimulated inflammatory cytokine production via c-jun N-terminal kinase in the monocytic cell line THP-1. J Endotoxin Res. 2007;13:227–34.

    Article  PubMed  CAS  Google Scholar 

  17. Sherry CL, O’Connor JC, Kramer JM, Freund GG. Augmented lipopolysaccharide-induced TNF-alpha production by peritoneal macrophages in type 2 diabetic mice is dependent on elevated glucose and requires p38 MAPK. J Immunol. 2007;178:663–70.

    PubMed  CAS  Google Scholar 

  18. Chen YJ, Hsu KW, Chen YL. Acute glucose overload potentiates nitric oxide production in lipopolysaccharide-stimulated macrophages: the role of purinergic receptor activation. Cell Biol Int. 2006;30:817–22.

    Article  PubMed  CAS  Google Scholar 

  19. King GL. The role of inflammatory cytokines in diabetes and its complications. J Periodontol. 2008;79(8 Suppl):1527–34.

    Article  PubMed  CAS  Google Scholar 

  20. Liao PC, Chien SC, Ho CL, Wang EI, Lee SC, Kuo YH, et al. Osthole regulates inflammatory mediator expression through modulating NF-κB, mitogen-activated protein kinases, protein kinase C, and reactive oxygen species. J Agric Food Chem. 2010;58(19):10445–51.

    Article  PubMed  CAS  Google Scholar 

  21. Cosentino F, Hishikawa K, Katusic ZS, Luscher TF. High glucose increases nitric oxide synthase expression and superoxide anion generation in human aortic endothelial cells. Circulation. 1997;96:25–8.

    Article  PubMed  CAS  Google Scholar 

  22. Ido Y, Kilo C, Williamson JR. Cytosolic NADH/NAD + , free radicals, and vascular dysfunction in early diabetes mellitus. Diabetologia. 1997;40(Suppl 2):S115–7.

    Article  PubMed  CAS  Google Scholar 

  23. Igarashi M, Wakasaki H, Takahara N, Ishii H, Jiang ZY, Yamauchi T, et al. Glucose or diabetes activates p38 mitogen-activated protein kinase via different pathways. J Clin Invest. 1999;103:185–95.

    Article  PubMed  CAS  Google Scholar 

  24. Sharma K, Danoff TM, DePiero A, Ziyadeh FN. Enhanced expression of inducible nitric oxide synthase in murine macrophages and glomerular mesangial cells by elevated glucose levels: possible mediation via protein kinase C. Biochem Biophys Res Commun. 1995;207:80–8.

    Article  PubMed  CAS  Google Scholar 

  25. Kowluru RA, Odenbach S. Role of interleukin-1beta in the pathogenesis of diabetic retinopathy. Br J Ophthalmol. 2004;88:1343–7.

    Article  PubMed  CAS  Google Scholar 

  26. Spranger J, Kroke A, Möhlig M, Hoffmann K, Bergmann MM, Ristow M, et al. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes. 2003;52(3):812–7.

    Article  PubMed  CAS  Google Scholar 

  27. Plesner A, Greenbaum CJ, Gaur LK, Ernst RK, Lernmark A. Macrophages from high-risk HLA-DQB1*0201/*0302 type 1 diabetes mellitus patients are hypersensitive to lipopolysaccharide stimulation. Scand J Immunol. 2002;56:522–9.

    Article  PubMed  CAS  Google Scholar 

  28. Su SC, Hua KF, Lee H, Chao LK, Tan SK, Lee H, et al. LTA and LPS mediated activation of protein kinases in the regulation of inflammatory cytokines expression in macrophages. Clin Chim Acta. 2006;374(1–2):106–15.

    Article  PubMed  CAS  Google Scholar 

  29. Wen Y, Gu J, Li SL, Reddy MA, Natarajan R, Nadler JL. Elevated glucose and diabetes promote interleukin-12 cytokine gene expression in mouse macrophages. Endocrinology. 2006;147:2518–25.

    Article  PubMed  CAS  Google Scholar 

  30. Shi L, Kishore R, McMullen MR, Nagy LE. Lipopolysaccharide stimulation of ERK1/2 increases TNF-alpha production via Egr-1. Am J Physiol Cell Physiol. 2002;282:C1205–11.

    PubMed  CAS  Google Scholar 

  31. Jeon YJ, Kim YK, Lee M, Park SM, Han SB, Kim HM. Radicicol suppresses expression of inducible nitric-oxide synthase by blocking p38 kinase and nuclear factor-kappaB/Rel in lipopolysaccharide-stimulated macrophages. J Pharmacol Exp Ther. 2000;294(2):548–54.

    PubMed  CAS  Google Scholar 

  32. Nareika A, Im YB, Game BA, Slate EH, Sanders JJ, London SD, et al. High glucose enhances lipopolysaccharide-stimulated CD14 expression in U937 mononuclear cells by increasing nuclear factor kappaB and AP-1 activities. J Endocrinol. 2008;196:45–55.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Council, Taiwan: contract grant numbers: NSC 98-2320-B-039-003-MY2 (KF Hua); 100-2313-B-197-002 (KF Hua).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzu-Hua Wu.

Additional information

Responsible Editor: Graham Wallace.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, KF., Wang, SH., Dong, WC. et al. High glucose increases nitric oxide generation in lipopolysaccharide-activated macrophages by enhancing activity of protein kinase C-α/δ and NF-κB. Inflamm. Res. 61, 1107–1116 (2012). https://doi.org/10.1007/s00011-012-0503-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-012-0503-1

Keywords

Navigation