Skip to main content
Log in

Synthetic peptide fragment (65–76) of monocyte chemotactic protein-1 (MCP-1) inhibits MCP-1 binding to heparin and possesses anti-inflammatory activity in stable angina patients after coronary stenting

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

The peptide from C-terminal domain of MCP-1 (Ingramon) has been shown to inhibit monocyte migration and possess anti-inflammatory activity in animal models of inflammation and post-angioplasty restenosis. Here, we investigate the effect of Ingramon treatment on blood levels of acute-phase reactants and chemokines in patients after coronary stenting and the mechanisms of Ingramon anti-inflammatory activity.

Subjects

Eighty-seven patients with ischemic heart disease (IHD) who faced the necessity of coronary angiography (CA) were enrolled. In 67 patients, one-stage coronary stenting was performed; 33 of them were treated with Ingramon in addition to standard therapy. Twenty patients underwent CA only.

Methods

High-sensitivity C-reactive protein (hsCRP) and fibrinogen blood levels were detected routinely. The chemokine concentration in plasma was measured by enzyme-linked immunosorbent assay (ELISA) or cytometric bead array-based immunoassay. Intracellular Ca2+ levels and cell surface integrin exposure were assayed by flow cytometry. MCP-1 dimerization was studied by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). MCP-1–heparin binding was assessed with a biosensor and ELISA.

Results and conclusions

Ingramon treatment was accompanied by less pronounced elevation of hsCRP and fibrinogen levels and decreased MCP-1 concentration in plasma in patients after coronary stenting. Ingramon had no effect on MCP-1 interaction with cell receptors or MCP-1 dimerization, but inhibited MCP-1 binding to heparin. The anti-inflammatory activity of the peptide may be mediated by an impaired chemokine interaction with glycosaminoglycans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation. 2005;111:3481–8.

    Article  PubMed  Google Scholar 

  2. Luster AD. Chemokines-chemotactic cytokines that mediate inflammation. Engl J Med. 1998;338:436–45.

    Article  CAS  Google Scholar 

  3. Rollins BJ. Chemokines. Blood. 1997;90:909–28.

    PubMed  CAS  Google Scholar 

  4. Libby P. Changing concepts of atherogenesis. J Intern Med. 2000;247:349–58.

    Article  PubMed  CAS  Google Scholar 

  5. Charo IF, Taubman MB. Chemokines in the pathogenesis of vascular disease. Circ Res. 2004;95:858–66.

    Article  PubMed  CAS  Google Scholar 

  6. Gu L, Okada Y, Clinton SK, Gerard C, Sukhova GK, Libby P, Rollins BJ. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell. 1998;2:275–81.

    Article  PubMed  CAS  Google Scholar 

  7. Dawson TC, Kuziel WA, Osahar TA, Maeda N. Absence of CC chemokine receptor-2 reduces atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis. 1999;143:205–11.

    Article  PubMed  CAS  Google Scholar 

  8. Han KH, Han KO, Green SR, Quehenberger O. Expression of the monocyte chemoattractant protein-1 receptor CCR2 is increased in hypercholesterolemia. Differential effects of plasma lipoproteins on monocyte function. J Lipid Res. 1999;40:1053–63.

    PubMed  CAS  Google Scholar 

  9. Mazzone A, De Servi S, Mazzucchelli I, Bossi I, Ottini E, Vezzoli M, et al. Increased concentrations of inflammatory mediators in unstable angina: correlation with serum troponin T. Heart. 2001;85:571–5.

    Article  PubMed  CAS  Google Scholar 

  10. Hoio Y, Ikeda U, Takahashi M, Shimada K. Increased levels of monocyte-related cytokines in patients with unstable angina. Atherosclerosis. 2002;161:403–8.

    Article  Google Scholar 

  11. Chazov EI, Bespalova JD, Arefieva TI, Kukhtina NB, Sidorova MV, Provatorov SI, Krasnikova TL. The peptide analogue of MCP-1 65–76 sequence is an inhibitor of inflammation. Can J Physiol Pharmacol. 2007;85:332–40.

    Article  PubMed  CAS  Google Scholar 

  12. Tung R, Kaul S, Diamond GA, Shah PK. Narrative review: drug-eluting stents for the management of restenosis: a critical appraisal of the evidence. Ann Intern Med. 2006;144:913–9.

    PubMed  Google Scholar 

  13. Juwana YB, Rasoul S, Ottervanger JP, Suryapranata H. Efficacy and safety of rapamycin as compared to paclitaxel-eluting stents: a meta-analysis. J Invasive Cardiol. 2010;22:312–6.

    PubMed  Google Scholar 

  14. Furukava Y, Matsumori A, Ohashi N, Shioi T, Ono K, Harada A, et al. Anti-monocyte chemoattractant protein-1/monocyte chemotactic and activating factor antibody inhibits neointimal hyperplasia in injured rat carotid arteries. Circ Res. 1999;84:306–14.

    Google Scholar 

  15. Cipollone F, Marini M, Fazia M, Pini B, Iezzi A, Reale M, et al. Elevated circulating levels of monocyte chemoattractant protein-1 in patients with restenosis after coronary angioplasty. Arterioscler Thromb Vasc Biol. 2001;21:327–34.

    Article  PubMed  CAS  Google Scholar 

  16. Sako H, Miura S, Iwata A, Nishikawa H, Kawamura A, Matsuo K, et al. Changes in CCR2 chemokine receptor expression and plasma MCP-1 concentration after the implantation of bare metal stents versus sirolimus-eluting stents in patients with stable angina. Intern Med. 2008;47:7–13.

    Article  PubMed  Google Scholar 

  17. Park DW, Yun SC, Lee JY, Kim WJ, Kang SJ, Lee SW, et al. C-reactive protein and the risk of stent thrombosis and cardiovascular events after drug-eluting stent implantation. Circulation. 2009;120:1987–95.

    Article  PubMed  CAS  Google Scholar 

  18. Delhaye C, Maluenda G, Wakabayashi K, Ben-Dor I, Lemesle G, Collins SD, et al. Long-term prognostic value of preprocedural C-reactive protein after drug-eluting stent implantation. Am J Cardiol. 2010;105:826–32.

    Article  PubMed  CAS  Google Scholar 

  19. Saleh N, Svane B, Hansson L-O, Jensen J, Nilsson T, Danielsson O, Tornvall P. Response of serum C-reactive protein to percutaneous coronary intervention has prognostic value. Clin Chem. 2005;51:2124–30.

    Article  PubMed  CAS  Google Scholar 

  20. Reckless J, Tatalick LM, Grainger DJ. The pan-chemokine inhibitor NR58–3.14.3 abolishes tumour necrosis factor-alpha accumulation and leucocyte recruitment induced by lipopolysaccharide in vivo. Immunology. 2001;103:2244–54.

    Article  Google Scholar 

  21. Sidorova MV, Molokoedov AS, Arefieva TI, Kuchtina NB, Krasnikova TL, Bespalova ZhD, Bushuev VN. Peptide fragments and structural analogues of chemokine MCP-1: synthesis and effect on the MCP-1-induced migration of mononuclear cells. Russ J Bioorg Chem. 2004;30:523–33.

    Article  CAS  Google Scholar 

  22. Krasnikova TL, Arefieva TI, Melekhov MG, Kuchtina NB, Sidorova MV, Molokoedov AS, et al. The peptide of sequence 66–77 of monocyte chemotactic protein-1 (MCP-1) inhibits inflammation in experimental animals. Doklady Biol Sci. 2005;404:402–5.

    Article  CAS  Google Scholar 

  23. Chazov EI, Krasnikova TL, Bespalova ZhD, Kuchtina NB, Melekhov MG, Arefieva TI, et al. Inhibition of migration of monocytes and granulocytes in vivo by the peptide corresponding to sequence 65-76 of monocyte chemotactic protein-1 (MCP-1). Doklady Biochem Biophys. 2006;411:339–41.

    Article  CAS  Google Scholar 

  24. Sidorova MV, Molokoedov AS, Azmuko AA, Arefieva TI, Melekhov MG, Kukhtina NB, et al. Peptide fragment 66–77 of monocyte chemoattractant protein 1 and its retro-enantio analogue inhibit the migration of cells in vitro and in vivo. Russ J Bioorg Chem. 2006;32:146–53.

    Article  CAS  Google Scholar 

  25. Kukhtina NB, Bashtrykov PP, Bespalova ZhD, Sidorova MV. Aref′eva TI, Krasnikova TL. Effects of synthetic monocyte chemotactic protein -1 fragment 65–76 on neointima formation after carotid artery ballon injury in rats. Neurosci Behav Physiol. 2009;39:153–9.

    Article  PubMed  CAS  Google Scholar 

  26. Zhang Y, Rollins BJ. A dominant negative inhibitor indicates that monocyte chemoattractant protein 1 function as a dimer. Mol Cell Biol. 1995;15:4851–5.

    PubMed  CAS  Google Scholar 

  27. Nikitin PI, Gorshkov BG, Nikitin EP, Ksenevich TI. Picoscope, a new label-free biosensor. Sens Actuators. 2005;111–112:500–4.

    Google Scholar 

  28. Rollins BJ, Walz A, Baggiolini M. Recombinant human MCP-1/JE induces chemotaxis, calcium flux, and the respiratory burst in human monocytes. Blood. 1991;78:1112–6.

    PubMed  CAS  Google Scholar 

  29. Vaddi K, Newton RC. Regulation of monocyte integrin expression by beta-family chemokines. J Immunol. 1994;153:4721–32.

    PubMed  CAS  Google Scholar 

  30. Kuschert GS, Coulin F, Power CA, Proudfoot AE, Hubbard RE, Hoogewerf AJ, Wells TN. Glycosaminoglycans interact selectively with chemokines and modulate receptor binding and cellular responses. Biochemistry. 1999;38:12959–68.

    Article  PubMed  CAS  Google Scholar 

  31. Lau EK, Paavola CD, Johnson Z, Gaudry JP, Geretti E, Borlat F, et al. Identification of the glycosaminoglycan binding site of the CC chemokine, MCP-1: implications for structure and function in vivo. J Biol Chem. 2004;279:22294–305.

    Article  PubMed  CAS  Google Scholar 

  32. Krasnikova TL, Nikitin PI, Ksenevich TI, Gorshkov BG, Orlov AV, Sidorova MV, Azmuko AA, Arefieva TI, Mamochkina EN, Efremov EE, Bespalova ZhD. Effect of the C-terminal domain peptide fragment (65–76) of monocytic chemotactic protein-1 (MCP-1) on the interaction between MCP-1 and heparin. Dokl Biol Sci. 2010;433:289–92.

    Article  PubMed  CAS  Google Scholar 

  33. Webb LM, Ehrengruber MU, Clark-Lewis I, Baggiolini M, Rot A. Binding to heparan sulfate or heparin enhances neutrophil responses to interleukin 8. Proc Natl Acad Sci USA. 1993;90:7158–62.

    Article  PubMed  CAS  Google Scholar 

  34. Toutouzas K, Colombo A, Stefanadis C. Inflammation and restenosis after percutaneous coronary interventions. Eur Heart J. 2004;25:1679–87.

    Article  PubMed  CAS  Google Scholar 

  35. Inoue S, Egashira K, Ni W, Kitamoto S, Usui M, Otani K, Ishibashi M, et al. Anti-monocyte chemoattractant protein-1 gene therapy limits progression and destabilization of established atherosclerosis in apolipoprotein E-knockout mice. Circulation. 2002;106:2700–6.

    Article  PubMed  CAS  Google Scholar 

  36. Zhang Y, Ernst CA, Rollins BJ. MCP-1: structure/activity analysis. Methods. 1996;10:93–103.

    Article  PubMed  CAS  Google Scholar 

  37. Kim CH. Migration and fuction of Th 17 cells. Inflamm Allergy Drug Targets. 2009;8:221–8.

    PubMed  CAS  Google Scholar 

  38. Handel TM, Johnson Z, Crown SE, Lau EK, Sweeney M, Proudfoot AE. Regulation of protein function by glycosaminoglycans––as exemplified by chemokines. Annu Rev Biochem. 2005;74:385–410.

    Article  PubMed  CAS  Google Scholar 

  39. Paavola CD, Hemmerich S, Grunberger D, Polsky I, Bloom A, Freedman R, et al. Monomeric monocyte chemoattractant protein-1 (MCP-1) binds and activates the MCP-1 receptor CCR2B. J Biol Chem. 1998;273:33157–65.

    Article  PubMed  CAS  Google Scholar 

  40. Witt DP, Lander AD. Differential binding of chemokines to glycosaminoglycan subpopulations. Curr Biol. 1994;4:394–400.

    Article  PubMed  CAS  Google Scholar 

  41. Proudfoot AE, Handel TM, Johnson Z, Lau EK, LiWang P, Clark-Lewis I, et al. Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc Natl Acad Sci USA. 2003;100:1885–90.

    Article  PubMed  CAS  Google Scholar 

  42. Chakravarty L, Rogers L, Quach T, Breckenridge S, Kolattukudy PE. Lysine 58 and histidine 66 at the C-terminal alpha-helix of monocyte chemoattractant protein-1 are essential for glycosaminoglycan binding. J Biol Chem. 1998;273:29641–7.

    Article  PubMed  CAS  Google Scholar 

  43. Kuschert GS, Hoogewerf AJ, Proudfoot AE, Chung CW, Cooke RM, Hubbard RE, Wells TN, Sanderson PN. Identification of a glycosaminoglycan binding surface on human interleukin-8. Biochemistry. 1998;37:111193–201.

    Article  Google Scholar 

  44. Rebeiz AG, Zoghbi E, Harb R, Youhanna S, Skouri HN, Dimassi A, Abou-Nader G, Nasrallah A, Sawaya J, Gharzuddine W, Alam S. Comparison of the systemic levels of inflammatory markers after percutaneous coronary intervention with bare metal versus sirolimus-eluting stents. J Interv Cardiol. 2009;22(2):169–74.

    Article  PubMed  Google Scholar 

  45. Gaspardone A, Versaci F, Tomai F, Citone C, Proietti I, Gioffrè G, Skossyreva O. C-Reactive protein, clinical outcome, and restenosis rates after implantation of different drug-eluting stents. Am J Cardiol. 2006;97(9):1311–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by Russian Basic Research Foundation projects 09-04-00545, 10-04-00015, 11-02-01440, by GC N 16.512.11.2124, and by Moscow Government, Scientific and Technical Programme “Development of new methods of prevention, diagnosis and treatment of atherosclerosis and its complications” for 2009-2011, contract number 8/3-280n-10.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. I. Arefieva or T. L. Krasnikova.

Additional information

Responsible Editor: Artur Bauhofer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arefieva, T.I., Krasnikova, T.L., Potekhina, A.V. et al. Synthetic peptide fragment (65–76) of monocyte chemotactic protein-1 (MCP-1) inhibits MCP-1 binding to heparin and possesses anti-inflammatory activity in stable angina patients after coronary stenting. Inflamm. Res. 60, 955–964 (2011). https://doi.org/10.1007/s00011-011-0356-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-011-0356-z

Keywords

Navigation