Skip to main content
Log in

Expression of IgA class switching gene in tonsillar mononuclear cells in patients with IgA nephropathy

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background and aim

There are many reports suggesting a relationship between the tonsillar autoimmune response and the pathogenesis of IgA nephropathy (IgAN). Hyperproduction of IgA and IgA1 in tonsils could be caused by activation of the Ig class switching recombination (CSR). αGLT (germline transcripts) plays a critical role in the initiation of switching from Cμ to Cα, resulting in production of IgA. Activation-induced cytidine deaminase (AID) is a molecule essential for CSR and Ig gene conversion. The aim of this study was to investigate IgA and IgA1 levels in the supernatant of tonsillar mononuclear cells (TMCs) and the expression of Iα-Cα germline transcript and AID in TMCs stimulated with lipopolysaccharide or hemolytic streptococcus in IgAN patients and chronic tonsillitis patients.

Methods

27 IgAN patients were admitted into our hospital from Jan. 2009 to Feb. 2010. Another 27 patients with chronic tonsillitis but without renal disease were selected as the control group. Tonsillar lymphocytes were isolated by density gradient centrifugation using Lymphocyte Separation Medium. The amount of IgA or IgA1 secreted in the culture supernatants was determined by specific enzyme-linked immunosorbent assay. Expressions of Iα-Cα germline transcript and AID mRNA were examined by reverse transcription real-time PCR. The AID protein was determined by Western blotting.

Results

The production of IgA and IgA1 protein, especially the ratio of IgA1/IgA in TMCs stimulated with or without 10 μg/ml of lipopolysaccharide or 1 × 10cfu/ml of hemolytic streptococcus, were significantly increased in the IgAN group compared with that in the non-IgAN group (P < 0.05), and the IgA and IgA1 levels in TMCs stimulated with 10 μg/ml of lipopolysaccharide or 1 × 10cfu/ml of hemolytic streptococcus were markedly increased in patients with IgAN compared with the control group (P < 0.05).The expressions of Iα-Cα and AID mRNA were significantly upregulated in TMCs stimulated with 10 μg/ml of lipopolysaccharide or 1 × 10cfu/ml of hemolytic streptococcus in patients with IgAN compared with control group (P < 0.05). The expression of AID protein in TMCs stimulated with or without 10 μg/ml of lipopolysaccharide or 1 × 10cfu/ml of hemolytic streptococcus was significantly increased in the IgAN group compared with that in the non-IgAN group (P < 0.05). The expression of AID protein in TMCs stimulated with 10 μg/ml of lipopolysaccharide or 1 × 108 cfu/ml of hemolytic streptococcus was significantly increased in patients with IgAN compared with the control group (P < 0.05, P < 0.01).

Conclusion

Lipopolysaccharide or hemolytic streptococcus can induce the production of IgA and IgA1 and the expression of AID and Iα-Cα in TMCs from patients with IgAN. Our results indicate that the TMCs from patients with IgAN are capable of producing high levels of IgA and IgA1 when stimulated with lipopolysaccharide or hemolytic streptococcus, which may be due to the increased expression of AID and Iα-Cα.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Floege J, Feehaly J. IgA nephropathy: recent developments. J Am Soc Nephrol. 2000;11:2395–403.

    PubMed  CAS  Google Scholar 

  2. Berger J, Hinglais N. Les Depots intercapillaries d’IgA-IgG. J Urol Nephrol. 1968;74:694–5.

    CAS  Google Scholar 

  3. Bene MC, Hurault DE, Ligny B, et al. Tonsils in IgA nephropathy. Contrib Nephrol. 1993;104:153–61.

    PubMed  CAS  Google Scholar 

  4. Tamura S, Masuda Y, Inokuchi I, et al. Effect of and indication for tonsillectomy in IgA nephropathy. Acta Otolaryngol (Stockh). 1993;508(Suppl):23–8.

    Article  CAS  Google Scholar 

  5. Bene MC, Faure G, Hurault DE, et al. Immunoglobulin A nephropathy. Quantitative immunohistomorphometry of the tonsillar plasma cells evidences an inversion of the immunoglobulin A versus immunoglobulin G secreting cell balance. J Clin Invest. 1983;71:1342–7.

    Article  PubMed  CAS  Google Scholar 

  6. Terasawa K, Osakada M, Takahashi Y, et al. Concentration of IgA1-positive cells on the subepithelial sinusoid of the palatine tonsils in IgA nephritis. Jpn J Tonsil. 1991;31:41–5.

    Google Scholar 

  7. Tokuda M, Shimizu J, Sugiyama N, et al. Direct evidence of the production of IgA by tonsillar lymphocytes and the binding of IgA to the glomerular mesangium of IgA nephropathy patients. Acta Otolaryngol (Stockh). 1996;523(Suppl):182–4.

    CAS  Google Scholar 

  8. Suzuki S, et al. Haemophilus parainfluenzae antigen and antibody in renal biopsy samples and serum of patients with IgA nephropathy. Lancet. 1994;343(8888):12–6.

    Article  PubMed  CAS  Google Scholar 

  9. Suzuki S, et al. Immune response of tonsillar lymphocytes to Haemophilus parainfluenzae in patients with IgA nephropathy. Clin Exp Immunol. 2000;119(2):328–32.

    Article  PubMed  CAS  Google Scholar 

  10. Fujieda S, et al. Induction of IgA against Haemophilus parainfluenzae antigens in tonsillar mononuclear cells from patients with IgA nephropathy. Clin Immunol. 2000;95(3):235–43.

    Article  PubMed  CAS  Google Scholar 

  11. Hongdong H, Youming P, Hong L, Xinmin Y, Fuyou L. Decreased CD4 + CD25 + cells, increased dimeric IgA-producing cells in tonsils in IgA nephropathy. J Nephrol. 2010;23(02):202–9.

    Google Scholar 

  12. Nieuwenhuis P, Opstelten D. Functional anatomy of germinal centers. Am J Anat. 1984;170:421–7.

    Article  PubMed  CAS  Google Scholar 

  13. Koopman G, Pals ST. Cellular interactions in the germinal center:role of adhesion receptors and significance for the pathogenesis of AIDS and malignant lymphoma. Immunol Rev. 1992;126:21–6.

    Article  PubMed  CAS  Google Scholar 

  14. Gray D. Recruitment of virgin B cells into an immune response is restricted to activation outside of follicles. Immunology. 1988;65:73–8.

    PubMed  CAS  Google Scholar 

  15. Kelsoe G. B cell diversification and differentiation in the periphery. J Exp Med. 1994;180:5–11.

    Article  PubMed  CAS  Google Scholar 

  16. Jacob J, Kassir R, Kelsoe G. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl) acetyl. I. The architecture and dynamics of responding cell populations. J Exp Med. 1991;173:1165–72.

    Article  PubMed  CAS  Google Scholar 

  17. Liu YJ, Zhang J, Lane PJ, et al. Site of specific B cell activation in primary and secondary responses to T-cell dependent and T-cell independent antigens. Eur J Immunol. 1991;21:2951–8.

    Article  PubMed  CAS  Google Scholar 

  18. Liu YJ, Johnson GD, Gordon J. Germinal centers in T-cell-dependent antibody responses. Immunol Today. 1992;13:17–22.

    Article  PubMed  CAS  Google Scholar 

  19. Jacob J, Kelsoe G. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl) acetyl. II. A common clonal origin for periarteriolar lymphoid sheath-associated foci and germinal centers. J Exp Med. 1992;176:679–86.

    Article  PubMed  CAS  Google Scholar 

  20. Berek C, Berger A, Apel M. Maturation of the immune responses in germinal centers. Cell. 1991;67:1121–7.

    Article  PubMed  CAS  Google Scholar 

  21. Leanderson T, Kallberg E, Gray D. Expansion, selection and mutation of antigen-specific B cells in germinal centers. Immunol Rev. 1992;126:47–54.

    Article  PubMed  CAS  Google Scholar 

  22. MacLennan ICM, Liu YJ, Johnson GD. Maturation and dispersal of B-cell clones during T cell-dependent antibody responses. Immunol Rev. 1992;126:143–8.

    Article  PubMed  CAS  Google Scholar 

  23. Bottaro A, Lansford R, Xu L, Zhang J, Rothman P, Alt F. I region transcription (per se) promotes basal IgE class switch recombination but additional factors regulate the efficiency of the process. EMBO J. 1994;13:665–74.

    PubMed  CAS  Google Scholar 

  24. Lorenz M, Jung S, Radbruch A. Switch transcripts in immunoglobulin class switching. Science. 1995;267:1825–8.

    Article  PubMed  CAS  Google Scholar 

  25. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell. 2000;102:553–63.

    Article  PubMed  CAS  Google Scholar 

  26. Petersen-Mahrt SK, Harris RS, Neuberger MS. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature. 2002;418:99–103.

    Article  PubMed  CAS  Google Scholar 

  27. Chaudhuri J, Tian M, Khuong C, Chua K, Pinaud E, Alt FW. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature. 2003;422:726–30.

    Article  PubMed  CAS  Google Scholar 

  28. Petersen S et al. AID is required to initiate Nbs1/γ-H2AX focus formation and mutations at sites of class switching. Nature 2001;414:660-665.

    Google Scholar 

  29. Petersen-Mahrt SK, Harris RS. Neuberger MS. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 2002;418:99.

    Google Scholar 

  30. Martin A, Scharff MD. AID and mismatch repair in antibody diversification. Nature Rev. Immunol. 2002;2:605-614.

    Google Scholar 

  31. Kitani A, Strober W. Differential regulation of C alpha 1 and C alpha 2 germ-line and mature mRNA transcripts in human peripheral blood B cells. J Immunol. 1994;153:1466–77.

    PubMed  CAS  Google Scholar 

  32. Suzuki S, et al. Circulating IgA, IgG, and IgM class antibody against Haemophilus parainfluenzae antigens in patients with IgA nephropathy. Clin Exp Immunol. 1996;104(2):306–11.

    Article  PubMed  CAS  Google Scholar 

  33. Komorowska A, Komorowski J, Banasik M, et al. Cytokines locally produced by lymphocytes removed from the hypertrophic nasopharyngeal and palatine tonsils. Int J Pediatr Otorhinolaryngol. 2005;69:937–41.

    PubMed  Google Scholar 

  34. Masuda Y, et al. Clinical and immunological study of IgA nephropathy before and after tonsillectomy. Acta Otolaryngol Suppl. 1988;454:248–55.

    Article  PubMed  CAS  Google Scholar 

  35. Lai KN, Chui SH, Lai FM, et al. Predominant synthesis of IgA with rlight chain in IgA nephropathy. Kidney Int. 1988;33:584–91.

    Article  PubMed  CAS  Google Scholar 

  36. Wall Bake AW, Daha MR, van der Ark A, et al. Serum levels and in vitro production of IgA subclasses in patients with primary IgA nephropathy. Clin Exp Immunol. 1988;74:115–22.

    PubMed  Google Scholar 

  37. Yagame M, Tomino Y, Miura M, et al. Detection of IgA-class circulating immune complexes (CIC) in sera from patients with IgA nephropathy using a solid-phase anti-C3 Facb enzyme immunoassay (EIA). Clin Exp Immunol. 1987;67:270–7.

    PubMed  CAS  Google Scholar 

  38. Nomoto Y, Sakai H, Arimori S. Increase of IgA-bearing lymphocytes in peripheral blood from patient with IgA nephropathy. Am J Clin Pathol. 1979;71:158–66.

    PubMed  CAS  Google Scholar 

  39. Hale GM, Macintosh SL, Hiki Y, et al. Evidence for IgA-specific B cell hyperactivity in patients with IgA nephropathy. Kidney Int. 1986;29:718–26.

    Article  PubMed  CAS  Google Scholar 

  40. Waldo FB, Beischel L, West CD. IgA synthesis by lymphocytes from patients with IgA nephropathy and their relatives. Kidney Int. 1986;29:1229–35.

    Article  PubMed  CAS  Google Scholar 

  41. Yano N, Endoh M, Miyazaki M, et al. Altered production of IgE and IgA induced by IL-4 in peripheral blood mononuclear cells from patients with IgA nephropathy. Clin Exp Immunol. 1992;88:295–301.

    Article  PubMed  CAS  Google Scholar 

  42. Scivittaro V, Ranieri E, DiCillo M, et al. In vitro immunoglobulin production in relatives of patients with IgA nephropathy. Clin Nephrol. 1994;42:1–9.

    PubMed  CAS  Google Scholar 

  43. Yana N, Asakura K, Endoh M, et al. Polymorphism in the Ia1 germline transcript regulatory region and IgA productivity in patients with IgA nephropathy. J Immunol. 1998;160:4936–42.

    Google Scholar 

  44. Perry ME. The specialized structure of crypt epithelium in the human palatine tonsil and its functional significance. J Anat. 1994;185:111–27.

    PubMed  Google Scholar 

  45. Liu YJ, de Bouteiller O, Fugier-Vivier I. Mechanisms of selection and differentiation in germinal centers. Curr Opin Immunol. 1997;9:256–62.

    Article  PubMed  CAS  Google Scholar 

  46. Clark EA, Ledbetter JA. How B and T cells talk to each other. Nature. 1994;367:425–8.

    Article  PubMed  CAS  Google Scholar 

  47. Stavnezer J. Immunoglobulin class switching. Curr Opin Immunol. 1996;8:199–205.

    Article  PubMed  CAS  Google Scholar 

  48. Béné MC, Hurault De Ligny B, Kessler M, Faure GC. Confirmation of tonsillar anomalies in IgA nephropathy: a multicenter study. Nephron. 1991;58:425–8.

    Article  PubMed  Google Scholar 

  49. Muramatsu M, Sankaranand VS, Anant S, Sugai M, Kinoshita K, Davidson NO, Honjo T. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem. 1999;274:18470–6.

    Article  PubMed  CAS  Google Scholar 

  50. Arakawa H, Hauschild J, Buerstedde JM. Requirement of the activation-induced deaminase (AID) gene for immunoglobulin gene conversion. Science. 2002;295:1301–6.

    Article  PubMed  CAS  Google Scholar 

  51. Nagaoka H, Muramatsu M, Yamamura N, Kinoshita K, Honjo T. Activation-induced deaminase (AID)-directed hypermutation in the immunoglobulin Smu region: implication of AID involvement in a common step of class switch recombination and somatic hypermutation. J Exp Med. 2002;195:529–34.

    Article  PubMed  CAS  Google Scholar 

  52. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell. 2000;102:553–63.

    Article  PubMed  CAS  Google Scholar 

  53. Okazaki I, Yoshikawa K, Kinoshita K, Muramatsu M, Nagaoka H, Honjo T. Activation-induced cytidine deaminase links class switch recombination and somatic hypermutation. Ann NY Acad Sci. 2003;987:1–8.

    Article  PubMed  CAS  Google Scholar 

  54. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell. 2000;102:553–63.

    Article  PubMed  CAS  Google Scholar 

  55. Revy P, Muto T, Levy Y, Geissmann F, Plebani A, Sanal O, Catalan N, Forveille M, Dufourcq-Labelouse R, Gennery A, et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell. 2000;102:565–75.

    Article  PubMed  CAS  Google Scholar 

  56. Harris RS, Sale JE, Petersen-Mahrt SK, Neuberger MS. AID is essential for immunoglobulin V gene conversion in a cultured B cell line. Curr Biol. 2002;12:435–8.

    Article  PubMed  CAS  Google Scholar 

  57. Martin A, Bardwell PD, Woo CJ, Fan M, Shulman MJ, Scharff MD. Activation-induced cytidine deaminase turns on somatic hypermutation in hybridomas. Nature. 2002;415:802–6.

    PubMed  CAS  Google Scholar 

  58. Martin A, Scharff MD. AID and mismatch repair in antibody diversification. Nat Rev Immunol. 2002;2:605–14.

    Article  PubMed  CAS  Google Scholar 

  59. Martin A, Scharff MD. Somatic hypermutation of the AID transgene in B and non-B cells. Proc Natl Acad Sci USA. 2002;99:12304–8.

    Article  PubMed  CAS  Google Scholar 

  60. Yoshikawa K, Okazaki IM, Eto T, Kinoshita K, uramatsu M, Nagaoka H, Honjo T. AID enzyme induced hypermutation in an actively transcribed gene in fibroblasts. Science. 2002;296:2033–6.

    Article  PubMed  CAS  Google Scholar 

  61. Petersen-Mahrt SK, Harris RS, Neuberger MS. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature. 2002;418:99–103.

    Article  PubMed  CAS  Google Scholar 

  62. Shanmugam A, Shi M-J, Yauch L, Stavnezer J, Kenter AL. Evidence for class specific factors in immunoglobulin isotype switching. J Exp Med. 2000;191:1365–80.

    Article  PubMed  CAS  Google Scholar 

  63. Kenter AL, Wuerffel R, Dominguez C, Shanmugam A, Zhang H. Mapping of a functional recombination motif that defines isotype specificity for μ3γ3 switch recombination implicates NF-κB p50 as the isotype-specific switching factor. J Exp Med. 2004;199:617–27.

    Article  PubMed  CAS  Google Scholar 

  64. Ma L, Wortis HH, Kenter AL. Two new isotype-specific switching activities detected for Ig class switching. J Immunol. 2002;168:2835–46.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youming Peng.

Additional information

Responsible Editor: Andras Falus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Peng, Y., Liu, F. et al. Expression of IgA class switching gene in tonsillar mononuclear cells in patients with IgA nephropathy. Inflamm. Res. 60, 869–878 (2011). https://doi.org/10.1007/s00011-011-0347-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-011-0347-0

Keywords

Navigation