Skip to main content

Advertisement

Log in

Dimethylfumarate inhibits MIF-induced proliferation of keratinocytes by inhibiting MSK1 and RSK1 activation and by inducing nuclear p-c-Jun (S63) and p-p53 (S15) expression

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Dimethylfumarate (DMF) is used in the treatment of psoriasis. Macrophage migration inhibitory factor (MIF) is elevated in patients with severe psoriasis. We studied the effect of DMF on the MIF-induced activation of the mitogen- and stress-activated kinase 1 (MSK1) and p90 kDa ribosomal S6 kinase (RSK1) signaling pathways which regulate the proliferation of human keratinocytes via transcription factors.

Methods

The effects of DMF on the MIF-induced activation of MSK1, RSK1, cAMP-responsive element-binding protein (CREB), Cox-2 and c-Jun, JunB and p53 were studied by Western blotting using phospho-specific antibodies.

Results

DMF inhibited the MIF-induced phosphorylation of MSK1, RSK1, CREB and JunB, and reduced Cox-2 expression and the proliferation of cultured human keratinocytes. The expression of p-p53 (S15) was induced simultaneously with the inhibition of Cox-2. Addition of DMF before MIF induced nuclear expression of p-c-Jun (S63) and c-Jun. Transfection with small interfering MSK1 and RSK1 RNA before MIF incubation stimulated p-p53 (S15) and nuclear p-c-Jun (S63) similarly to DMF.

Conclusion

Our results indicate that the specific inhibitory effects of DMF on RSK1 and MSK1 activation together with the induction of p-c-Jun (S63) and p-p53 (S15) lead to the inhibition of keratinocyte proliferation, partly explaining the anti-psoriatic effect of DMF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

DMF:

Dimethylfumarate

MIF:

Macrophage migration inhibitory factor

ERK:

Extracellular signal-regulated kinase

MSK1:

Mitogen- and stress-activated protein kinase 1

RSK1:

p90 kDa ribosomal S6 kinase 1

References

  1. Mrowietz U, Asadullah K. Dimethylfumarate for psoriasis: more than a dietary curiosity. Trends Mol Med. 2005;11:43–8.

    Article  PubMed  CAS  Google Scholar 

  2. Stoof TJ, Flier J, Sampat S, et al. The antipsoriatic drug dimethylfumarate strongly suppresses chemokine production in human keratinocytes and peripheral blood mononuclear cells. Br J Dermatol. 2001;144:114–20.

    Article  Google Scholar 

  3. Loewe R, Pillinger M, De Martin R, et al. Dimethylfumarate inhibits tumor-necrosis-factor-induced CD62E expression in an NF-κB-dependent manner. J Invest Dermatol. 2001;117:1363–8.

    Article  PubMed  CAS  Google Scholar 

  4. Loewe R, Holnthoner W, Grøger M, et al. Dimethylfumarate inhibits TNF-induced nuclear entry of NF-κB in human endothelial cells. J Immunol. 2002;168:4781–7.

    PubMed  CAS  Google Scholar 

  5. Gesser B, Johansen C, Rasmussen MK, et al. Dimethylfumarate specifically inhibits the mitogen and stress-activated kinase 1 and 2 (MSK1/2): possible role for its anti-psoriatic effect. J Invest Dermatol. 2007;127:2129–37.

    Article  PubMed  CAS  Google Scholar 

  6. Otkjaer K, Kragballe K, Johansen C, et al. IL-20 gene expression is induced by IL-1β through mitogen-activated protein kinase and NF-κB dependent mechanism. J Invest Dermatol. 2007;127:1326–36.

    Article  PubMed  CAS  Google Scholar 

  7. Shimizu T, Abe R, Nakamura et al. High expression of macrophage migration inhibitory factor in human melanoma cells and its role in tumor cell growth and angiogenesis. Biochem Biophys Res Commun 1999;264:751–758

  8. Steinerhoff M, Meinhardt A, Steinhoff A, et al. Evidence for a role of macrophage migration inhibitory factor in psoriatic skin diseases. Br J Dermatol. 1999;141:1061–6.

    Article  Google Scholar 

  9. Shimizu T, Nishihira J, Mizue Y, et al. High macrophage migration inhibitory factor (MIF) serum levels associated with extended psoriasis. J Invest Dermatol. 2001;116:989–90.

    Article  PubMed  CAS  Google Scholar 

  10. Wu J, Chen F, Zhang X, et al. Association of MIF promoter polymorphisms with psoriasis in a Han population in north-eastern China. J Dermatol Sci. 2009;53:212–5.

    Article  PubMed  CAS  Google Scholar 

  11. Mitchell RA, Liao H, Chesney J et al. Macrophage migration inhibitory factor (MIF) sustains macrophage proinflammatory function by inhibiting p53: regulatory role in the innate immune response. Proc Natl Acad Sci USA. 2002;99(1):345–50

    Google Scholar 

  12. Hudson J, Shoaibi MA, Maestro R, et al. A proinflammatory cytokine inhibits p53 tumor suppressor activity. J Exp Med. 1999;190:1375–82.

    Article  PubMed  CAS  Google Scholar 

  13. Lue H, Kaurniotu A, Fingerle-Rowson G, Roger T et al. Rapid and transient activation of the ERK MAPK signalling pathway by macrophage migration inhibitory factor (MIF) and dependence on JAB1/CSN5 and Src kinase activity. Cell Signal 2006;18:688–703

    Google Scholar 

  14. Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev. 2004;68:320–44.

    Article  PubMed  CAS  Google Scholar 

  15. Weston CR, Davis RJ. The JNK signal transduction pathway. Curr Opin Genet Dev. 2002;12(1):14–21.

    Article  PubMed  CAS  Google Scholar 

  16. Deak M, Clifton AD, Lucocq JM, Alessi DR. Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38 and may mediate activation of CREB. EMBO J. 1998;17:4426–41.

    Article  PubMed  CAS  Google Scholar 

  17. Wiggin GR, Soloaga A, Foster JM, et al. MSK1 and MSK2 are required for the mitogen-and stress-induced phophorylation of CREB and ATF1 in fibroblasts. Mol Cell Biol. 2002;22:2871–81.

    Article  PubMed  CAS  Google Scholar 

  18. McCoy CE, Campbell DG, Deak M, et al. MSK1 activity is controlled by multiple phosphorylation sites. Biochem J. 2005;387:507–17.

    Article  PubMed  CAS  Google Scholar 

  19. Arthur JSM. MSK activation and physiological roles. Frontiers Biosci. 2008;13:5866–79.

    Article  CAS  Google Scholar 

  20. Anjum R, Blenis J. The RSK family of kinases: emerging roles in cellular signalling. Nat Rev Mol Cell Biol. 2008;9:747–58.

    Article  PubMed  CAS  Google Scholar 

  21. Frödin M, Gammeltoft S. Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction. Mol Cell Endocr. 1999;151:65–77.

    Article  Google Scholar 

  22. Carriere A, Ray H, Blenis J, Roux PP. The RSK factors of activating the Ras/MAPK signalling cascade. Front Biosci. 2008;13:4258–75.

    Article  PubMed  CAS  Google Scholar 

  23. Mayr B, Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol. 2001;2:599–609

    Google Scholar 

  24. McCoy CE, MacDonald A, Morrice NA et al. Identification of novel phosphorylation sites in MSK1 by precursor ion scanning MS. Biochem J. 2007;402:491–501

    Google Scholar 

  25. Roux PP, Richards SA, J Blenis1. Phosphorylation of p90 Ribosomal S6 Kinase (RSK) regulates extracellular signal-regulated kinase docking and RSK activity. Mol Cell Biol. 2003; 23:4796–4804

  26. Behrens A, Sibilia M, Wagner EF. Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nat Genet. 1999;21:326–9.

    Article  PubMed  CAS  Google Scholar 

  27. Schreiber M, Kolbus A, Piu F, et al. Control of cell cycle progression by c-Jun is p53 dependent. Genes Dev. 1999;13:607–19.

    Article  PubMed  CAS  Google Scholar 

  28. Whitmarsh-AJ, Davis RJ. Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med. 1996;74(10):589–607

    Google Scholar 

  29. Shaulian E, Karin M. AP-1 in cell proliferation and survival. Oncogene. 2001;20:2390–400.

    Article  PubMed  CAS  Google Scholar 

  30. Kleemann R, Hausser A, Geiger G, et al. Intracellular action of the cytokine MIF to modulate AP-1 activity and the cell cycle through Jab1. Nature. 2000;408:211–6.

    Article  PubMed  CAS  Google Scholar 

  31. Kragballe K, Desjarlais L, Marcello CL. Increased DNA-synthesis of uninvolved psoriatic epidermis is maintained in vitro. Br J Dermatol. 1985;112:263–70.

    Article  PubMed  CAS  Google Scholar 

  32. Shieh SY, Ikeda M, Taya Y, Prives C. DNA damage-induced phophorylation of p53 alleviates inhibition by MDM2. Cell. 1997;91(3):325–34.

    Article  PubMed  CAS  Google Scholar 

  33. Hendzel MJ, Wei Y, Mancini MA, Hooser AV, et al. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma. 1997;106:348–60.

    Article  PubMed  CAS  Google Scholar 

  34. Chou S, Baichwal V, JE Ferrell. Inhibition of c-Jun DNA binding by mitogen-activated protein kinase. Mol Biol Cell. 1992; 3:1117–30

    Google Scholar 

  35. Thomson S, Mahadevan LC, Clayton AL. MAP kinases-mediated signalling to nucleosomes and immediate-early gene induction. Cell Dev Biol. 1999;10:205–14.

    Article  CAS  Google Scholar 

  36. Funding AT, Johansen C, Kragballe K et al. Mitogen- and Stress-activated protein kinase 1 is activated in lesional psoriatic epidermis and regulates the expression of pro-inflammatory cytokines. J Invest Dermatol. 2006;126(1):784–91

    Google Scholar 

  37. Funding AT, Johansen C, Kragballe K, Iversen L. Mitogen- and stress-activated protein kinase 2 and cyclin AMP response element binding protein are activated in lesional psoriatic epidermis. J Invest Dermatol. 2007;127:2012–9.

    Article  PubMed  CAS  Google Scholar 

  38. Yalcin B, Tezel GG, Arda N, et al. Vascular endothelial growth factor, vascular endothelial growth factor receptor-3 and cyclooxygenase-2 expression in psoriasis. Anal Quant Cytol Histol. 2007;29(6):358–64.

    PubMed  Google Scholar 

  39. Shimizu T. Role of macrophage migration inhibitory factor in the skin. J Dermatol Sci. 2005;37:65–73.

    Article  PubMed  CAS  Google Scholar 

  40. Bech-Otschir D, Seeger M, Dubiel W. The COP9 signalosome: at the interface between transduction and ubiquitin-dependent proteolysis. J Cell Sci. 2002;115:467–73.

    PubMed  CAS  Google Scholar 

  41. Minden A, Lin A, Smeal T, et al. c-Jun N-terminal phosphorylation correlates with activation of the JNK subgroup but not the ERK subgroup of mitogen-activated protein kinase. Mol Cell Biol. 1994;14:6683–8.

    PubMed  CAS  Google Scholar 

  42. Cavigelli M, Dolfi F, Claret FX, Karin M. Induction of c-fos expression through JNK mediated TCF/ELK-1 phosphorylation. EMBO J. 1995;14(23):5957–64.

    PubMed  CAS  Google Scholar 

  43. Milne DM, Campbell LE DG, Meek DW. P53 phosphorylated in vitro and in vivo by an ultraviolet radiation-induced protein kinase characteristic of the c-Jun kinase, JNK1. J Biol Chem 1995;270(10):5511–8

    Google Scholar 

  44. Fuchs SY, Adler V, Pincus MR, Ronai Z. MEKK1 /JNK signalling stabilizes and activates p53. Proc Natl Acad Sci USA. 1998;95:10541–6.

    Article  PubMed  CAS  Google Scholar 

  45. Agarwal ML, Ramana CV, Hamilton M et al. Regulation of p53 expression by the RAS-MAPK kinase pathway. Oncogene. 2001;20:2527–36

    Google Scholar 

  46. Johansen C, Flindt E, Kragballe K, et al. Inverse regulation of the nuclear factor-κB binding to the p53 and interleukin-8 response element in lesional psoriatic skin. J Invest Dermatol. 2005;124:1284–92.

    Article  PubMed  CAS  Google Scholar 

  47. Johansen C, Kragballe K, Rasmussen M, et al. Activator protein 1 DNA binding activity is decreased in lesional psoriatic skin compared with nonlesional psoriatic skin. Br J Dermatol. 2004;151:600–7.

    Article  PubMed  CAS  Google Scholar 

  48. Haider AS, Duculan J, Whynot JA, Kruger JG. Increased JunB mRNA and protein expression in psoriasis vulgaris lesions. J Invest Dermatol. 2006;126:912–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by research grants from the Danish Psoriasis Foundation, the Novo Nordisk Foundation, Aage Bang Foundation DK and Gangsted Foundation DK.

Conflict of interest

The authors state no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Gesser.

Additional information

Responsible editor: Liwu Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gesser, B., Rasmussen, M.K., Raaby, L. et al. Dimethylfumarate inhibits MIF-induced proliferation of keratinocytes by inhibiting MSK1 and RSK1 activation and by inducing nuclear p-c-Jun (S63) and p-p53 (S15) expression. Inflamm. Res. 60, 643–653 (2011). https://doi.org/10.1007/s00011-011-0316-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-011-0316-7

Keywords

Navigation