Skip to main content
Log in

Helicobacter pylori: a ROS-inducing bacterial species in the stomach

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been reported to impact gastric inflammation and carcinogenesis. However, the precise mechanism by which Helicobacter pylori induces gastric carcinogenesis is presently unclear.

Aim

This review focuses on H. pylori-induced ROS/RNS production in the host stomach, and its relationship with gastric carcinogenesis.

Results

Activated neutrophils are the main source of ROS/RNS production in the H. pylori-infected stomach, but H. pylori itself also produces ROS. In addition, extensive recent studies have revealed that H. pylori-induced ROS production in gastric epithelial cells might affect gastric epithelial cell signal transduction, resulting in gastric carcinogenesis. Excessive ROS/RNS production in the stomach can damage DNA in gastric epithelial cells, implying its involvement in gastric carcinogenesis.

Conclusion

Understanding the molecular mechanism behind H. pylori-induced ROS, and its involvement in gastric carcinogenesis, is important for developing new strategies for gastric cancer chemoprevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet. 1984;1:1311–5.

    Article  PubMed  CAS  Google Scholar 

  2. Correa P, Cuello C, Duque E, Burbano LC, Garcia FT, Bolanos O, et al. Gastric cancer in Colombia. III. Natural history of precursor lesions. J Natl Cancer Inst. 1976;57:1027–35.

    PubMed  CAS  Google Scholar 

  3. Lu W, Pan K, Zhang L, Lin D, Miao X, You W. Genetic polymorphisms of interleukin (IL)-1B, IL-1RN, IL-8, IL-10 and tumor necrosis factor alpha and risk of gastric cancer in a Chinese population. Carcinogenesis. 2005;26:631–6.

    Article  PubMed  CAS  Google Scholar 

  4. Takahashi S, Fujita T, Yamamoto A. Role of cyclooxygenase-2 in Helicobacter pylori-induced gastritis in Mongolian gerbils. Am J Physiol Gastrointest Liver Physiol. 2000;279:791G–8G.

    PubMed  CAS  Google Scholar 

  5. Yeo M, Park HK, Kim DK, Cho SW, Kim YS, Cho SY, et al. Restoration of heat shock protein70 suppresses gastric mucosal inducible nitric oxide synthase expression induced by Helicobacter pylori. Proteomics. 2004;4:3335–42.

    Article  PubMed  CAS  Google Scholar 

  6. Handa O, Naito Y, Yoshikawa T. CagA protein of Helicobacter pylori: a hijacker of gastric epithelial cell signaling. Biochem Pharmacol. 2007;73:1697–702.

    Article  PubMed  CAS  Google Scholar 

  7. Shirasaka D. Helicobacter pylori VacA and gastric ulcer. Int J Hematol. 2006;84:316–8.

    Article  PubMed  CAS  Google Scholar 

  8. Viala J, Chaput C, Boneca IG, Cardona A, Girardin SE, Moran AP, et al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol. 2004;5:1166–74.

    Article  PubMed  CAS  Google Scholar 

  9. Suzuki H, Miura S, Imaeda H, Suzuki M, Han JY, Mori M, et al. Enhanced levels of chemiluminescence and platelet activating factor in urease-positive gastric ulcers. Free Radic Biol Med. 1996;20:449–54.

    Article  PubMed  CAS  Google Scholar 

  10. Davies GR, Simmonds NJ, Stevens TR, Sheaff MT, Banatvala N, Laurenson IF, et al. Helicobacter pylori stimulates antral mucosal reactive oxygen metabolite production in vivo. Gut. 1994;35:179–85.

    Article  PubMed  CAS  Google Scholar 

  11. Naito Y, Yoshikawa T. Molecular and cellular mechanisms involved in Helicobacter pylori-induced inflammation and oxidative stress. Free Radic Biol Med. 2002;33:323–36.

    Article  PubMed  CAS  Google Scholar 

  12. Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol. 2004;4:181–9.

    Article  PubMed  CAS  Google Scholar 

  13. Nagata K, Yu H, Nishikawa M, Kashiba M, Nakamura A, Sato EF, et al. Helicobacter pylori generates superoxide radicals and modulates nitric oxide metabolism. J Biol Chem. 1998;273:14071–3.

    Article  PubMed  CAS  Google Scholar 

  14. Benaissa M, Babin P, Quellard N, Pezennec L, Cenatiempo Y, Fauchere JL. Changes in Helicobacter pylori ultrastructure and antigens during conversion from the bacillary to the coccoid form. Infect Immun. 1996;64:2331–5.

    PubMed  CAS  Google Scholar 

  15. Cellini L, Allocati N, Angelucci D, Iezzi T, Di Campli E, Marzio L, et al. Coccoid Helicobacter pylori not culturable in vitro reverts in mice. Microbiol Immunol. 1994;38:843–50.

    PubMed  CAS  Google Scholar 

  16. Nakamura A, Park A, Nagata K, Sato EF, Kashiba M, Tamura T, et al. Oxidative cellular damage associated with transformation of Helicobacter pylori from a bacillary to a coccoid form. Free Radic Biol Med. 2000;28:1611–8.

    Article  PubMed  CAS  Google Scholar 

  17. Naito Y, Yoshikawa T, Fujii T, Boku Y, Yagi N, Dao S, et al. Monochloramine-induced cell growth inhibition and apoptosis in a rat gastric mucosal cell line. J Clin Gastroenterol. 1997;25(Suppl 1):179S–85S.

    Article  PubMed  Google Scholar 

  18. Sumimoto H, Miyano K, Takeya R. Molecular composition and regulation of the Nox family NAD(P)H oxidases. Biochem Biophys Res Commun. 2005;338:677–86.

    Article  PubMed  CAS  Google Scholar 

  19. Kawahara T, Teshima S, Oka A, Sugiyama T, Kishi K, Rokutan K. Type I Helicobacter pylori lipopolysaccharide stimulates toll-like receptor 4 and activates mitogen oxidase 1 in gastric pit cells. Infect Immun. 2001;69:4382–9.

    Article  PubMed  CAS  Google Scholar 

  20. Handa O, Naito Y, Takagi T, Shimozawa M, Kokura S, Yoshida N, et al. Tumor necrosis factor-alpha-induced cytokine-induced neutrophil chemoattractant-1 (CINC-1) production by rat gastric epithelial cells: role of reactive oxygen species and nuclear factor-kappaB. J Pharmacol Exp Ther. 2004;309:670–6.

    Article  PubMed  CAS  Google Scholar 

  21. Handa O, Naito Y, Yoshikawa T. Rat cytokine-induced neutrophil chemoattractant-1 (CINC-1) in inflammation. J Clin Biochem Nutr. 2006;38:51–8.

    Article  CAS  Google Scholar 

  22. Oh JD, Karam SM, Gordon JI. Intracellular Helicobacter pylori in gastric epithelial progenitors. Proc Natl Acad Sci USA. 2005;102:5186–91.

    Article  PubMed  CAS  Google Scholar 

  23. Wang J, Brooks EG, Bamford KB, Denning TL, Pappo J, Ernst PB. Negative selection of T cells by Helicobacter pylori as a model for bacterial strain selection by immune evasion. J Immunol. 2001;167:926–34.

    PubMed  CAS  Google Scholar 

  24. Fu S, Ramanujam KS, Wong A, Fantry GT, Drachenberg CB, James SP, et al. Increased expression and cellular localization of inducible nitric oxide synthase and cyclooxygenase 2 in Helicobacter pylori gastritis. Gastroenterology. 1999;116:1319–29.

    Article  PubMed  CAS  Google Scholar 

  25. Tsuji S, Kawano S, Tsujii M, Takei Y, Tanaka M, Sawaoka H, et al. Helicobacter pylori extract stimulates inflammatory nitric oxide production. Cancer Lett. 1996;108:195–200.

    Article  PubMed  CAS  Google Scholar 

  26. Kuwahara H, Miyamoto Y, Akaike T, Kubota T, Sawa T, Okamoto S, et al. Helicobacter pylori urease suppresses bactericidal activity of peroxynitrite via carbon dioxide production. Infect Immun. 2000;68:4378–83.

    Article  PubMed  CAS  Google Scholar 

  27. Bryk R, Griffin P, Nathan C. Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature. 2000;407:211–5.

    Article  PubMed  CAS  Google Scholar 

  28. Gobert AP, McGee DJ, Akhtar M, Mendz GL, Newton JC, Cheng Y, et al. Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells: a strategy for bacterial survival. Proc Natl Acad Sci USA. 2001;98:13844–9.

    Article  PubMed  CAS  Google Scholar 

  29. McGee DJ, Zabaleta J, Viator RJ, Testerman TL, Ochoa AC, Mendz GL. Purification and characterization of Helicobacter pylori arginase, RocF: unique features among the arginase superfamily. Eur J Biochem. 2004;271:1952–62.

    Article  PubMed  CAS  Google Scholar 

  30. Mori M, Gotoh T. Arginine metabolic enzymes, nitric oxide and infection. J Nutr. 2004;134:2820S–5S (discussion 2853S).

    PubMed  CAS  Google Scholar 

  31. Bussiere FI, Chaturvedi R, Cheng Y, Gobert AP, Asim M, Blumberg DR, et al. Spermine causes loss of innate immune response to Helicobacter pylori by inhibition of inducible nitric-oxide synthase translation. J Biol Chem. 2005;280:2409–12.

    Article  PubMed  CAS  Google Scholar 

  32. Harris AG, Wilson JE, Danon SJ, Dixon MF, Donegan K, Hazell SL. Catalase (KatA) and KatA-associated protein (KapA) are essential to persistent colonization in the Helicobacter pylori SS1 mouse model. Microbiology. 2003;149:665–72.

    Article  PubMed  CAS  Google Scholar 

  33. Iinuma S, Naito Y, Yoshikawa T, Takahashi S, Takemura T, Yoshida N, et al. In vitro studies indicating antioxidative properties of rebamipide. Dig Dis Sci. 1998;43:35S–9S.

    Article  PubMed  CAS  Google Scholar 

  34. Ogino K, Hobara T, Ishiyama H, Yamasaki K, Kobayashi H, Izumi Y, et al. Antiulcer mechanism of action of rebamipide, a novel antiulcer compound, on diethyldithiocarbamate-induced antral gastric ulcers in rats. Eur J Pharmacol. 1992;212:9–13.

    Article  PubMed  CAS  Google Scholar 

  35. Naito Y, Yoshikawa T, Tanigawa T, Sakurai K, Yamasaki K, Uchida M, et al. Hydroxyl radical scavenging by rebamipide and related compounds: electron paramagnetic resonance study. Free Radic Biol Med. 1995;18:117–23.

    Article  PubMed  CAS  Google Scholar 

  36. Haruma K, Ito M, Kido S, Manabe N, Kitadai Y, Sumii M, et al. Long-term rebamipide therapy improves Helicobacter pylori-associated chronic gastritis. Dig Dis Sci. 2002;47:862–7.

    Article  PubMed  CAS  Google Scholar 

  37. Suzuki H, Mori M, Seto K, Miyazawa M, Kai A, Suematsu M, et al. Polaprezinc attenuates the Helicobacter pylori-induced gastric mucosal leucocyte activation in Mongolian gerbils—a study using intravital videomicroscopy. Aliment Pharmacol Ther. 2001;15:715–25.

    Article  PubMed  CAS  Google Scholar 

  38. Suzuki H, Mori M, Seto K, Nagahashi S, Kawaguchi C, Morita H, et al. Polaprezinc, a gastroprotective agent: attenuation of monochloramine-evoked gastric DNA fragmentation. J Gastroenterol. 1999;34(Suppl 11):43–6.

    PubMed  CAS  Google Scholar 

  39. Yoshikawa T, Naito Y, Tanigawa T, Yoneta T, Kondo M. The antioxidant properties of a novel zinc-carnosine chelate compound, N-(3-aminopropionyl)-l-histidinato zinc. Biochim Biophys Acta. 1991;1115:15–22.

    PubMed  CAS  Google Scholar 

  40. Suzuki H, Miyazawa M, Nagahashi S, Sato M, Bessho M, Nagata H, et al. Rabeprazole treatment attenuated Helicobacter pylori-associated gastric mucosal lesion formation in Mongolian gerbils. J Gastroenterol Hepatol. 2003;18:787–95.

    Article  PubMed  CAS  Google Scholar 

  41. Handa O, Yoshida N, Fujita N, Tanaka Y, Ueda M, Takagi T, et al. Molecular mechanisms involved in anti-inflammatory effects of proton pump inhibitors. Inflamm Res. 2006;55:476–80.

    Article  PubMed  CAS  Google Scholar 

  42. Wandall JH. Effects of omeprazole on neutrophil chemotaxis, super oxide production, degranulation, and translocation of cytochrome b-245. Gut. 1992;33:617–21.

    Article  PubMed  CAS  Google Scholar 

  43. Lapenna D, de Gioia S, Ciofani G, Festi D, Cuccurullo F. Antioxidant properties of omeprazole. FEBS Lett. 1996;382:189–92.

    Article  PubMed  CAS  Google Scholar 

  44. Carneiro LA, Travassos LH, Soares F, Tattoli I, Magalhaes JG, Bozza MT, et al. Shigella induces mitochondrial dysfunction and cell death in nonmyleoid cells. Cell Host Microbe. 2009;5:123–36.

    Article  PubMed  CAS  Google Scholar 

  45. Inoue K, Takano H, Oda T, Yanagisawa R, Tamura H, Adachi Y, et al. Soluble cell wall beta-glucan of Candida induces/enhances apoptosis and oxidative stress in murine lung. Immunopharmacol Immunotoxicol. 2009;31:140–5.

    Article  PubMed  CAS  Google Scholar 

  46. Nam KT, Oh SY, Ahn B, Kim YB, Jang DD, Yang KH, et al. Decreased Helicobacter pylori associated gastric carcinogenesis in mice lacking inducible nitric oxide synthase. Gut. 2004;53:1250–5.

    Article  PubMed  CAS  Google Scholar 

  47. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, et al. Patterns of somatic mutation in human cancer genomes. Nature. 2007;446:153–8.

    Article  PubMed  CAS  Google Scholar 

  48. Ernst P. Review article: the role of inflammation in the pathogenesis of gastric cancer. Aliment Pharmacol Ther. 1999;13(Suppl 1):13–8.

    Article  PubMed  Google Scholar 

  49. Nakajima N, Ito Y, Yokoyama K, Uno A, Kinukawa N, Nemoto N, et al. The expression of murine double minute 2 (MDM2) on Helicobacter pylori-infected intestinal metaplasia and gastric cancer. J Clin Biochem Nutr. 2009;44:196–202.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research (B) to T.Y. (no. 21390184) and (C) to Y.N. (no.22590705) from Japan Society for the Promotion of Science, by a City Area Program to T.Y. and Y.N. from Ministry of Education, Culture, Sports, Science and Technology, Japan, and by an Adaptable and Seamless Technology Transfer Program through target-driven R&D to Y.N. from Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Handa.

Additional information

Responsible Editor: Kumar Visvanathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Handa, O., Naito, Y. & Yoshikawa, T. Helicobacter pylori: a ROS-inducing bacterial species in the stomach. Inflamm. Res. 59, 997–1003 (2010). https://doi.org/10.1007/s00011-010-0245-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-010-0245-x

Keywords

Navigation