Skip to main content
Log in

Chlamydia trachomatis heat shock proteins 60 and 10 induce apoptosis in endocervical epithelial cells

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Aim and objective

The potential role of chlamydial heat shock proteins (cHSP) 60 and cHSP10 in apoptosis of primary cervical epithelial cells was investigated.

Methods

Primary cervical epithelial cells were stimulated with cHSP60 and cHSP10 for 4 h. Quantitative measurements of apoptosis were made using cytofluorometry, and apoptosis-related genes were analyzed by microarray, real-time PCR and western blotting. Further, levels of proinflammatory cytokines (IL-18 and IL-1β) were determined by semi-quantitative RT-PCR.

Results

After a 4-h incubation in the presence of recombinant cHSP60 or cHSP10, the number of cells exhibiting annexin V binding activity increased 6- and 5-fold, respectively (P < 0.05). A DNA microarray study showed significant (P < 0.05) upregulation of interleukin (IL)-1 β-convertase, and caspase-3, -8 and -9 genes in cHSP60- and cHSP10-stimulated than in control cells as confirmed by real-time RT-PCR and western blotting. Transcript levels of IL-1β and IL-18 in cells treated with cHSP60 and cHSP10 were found to be significantly (P < 0.05) higher in stimulated than in control cells.

Conclusion

cHSP60- and cHSP10-induced caspase expression, proinflammatory cytokine production and apoptosis of primary cervical epithelial cells might play a role in the pathogenesis of infertility in women with persistent chlamydial infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dean D, Suchland RJ, Stamm WE. Evidence for long-term cervical persistence of Chlamydia trachomatis by omp1 genotyping. J Infect Dis. 2000;182:909–16.

    Article  CAS  PubMed  Google Scholar 

  2. Moulder JW. Interaction of chlamydiae and host cells in vitro. Microbiol Rev. 1991;55:143–90.

    CAS  PubMed  Google Scholar 

  3. Byrne GI, Ojcius DM. Chlamydia and apoptosis: life and death decisions of an intracellular pathogen. Nat Rev Microbiol. 2004;2:802–8.

    Article  CAS  PubMed  Google Scholar 

  4. Equils O, Lu D, Gatter M, Witkin SS, Bertolotto C, Arditi M, et al. Chlamydia heat shock protein 60 induces trophoblast apoptosis through TLR4. J Immunol. 2006;177:1257–63.

    CAS  PubMed  Google Scholar 

  5. Neuer A, Lam KN, Tiller FW, Kiesel L, Witkin SS. Humoral immune response to membrane components of Chlamydia trachomatis and expression of human 60 kDa heat shock protein in follicular fluid of in vitro fertilization patients. Hum Reprod. 1997;12:925–9.

    Article  CAS  PubMed  Google Scholar 

  6. LaVerda D, Kalayoglu MV, Byrne GI. Chlamydial heat shock proteins and disease pathology: new paradigms for old problems? Infect Dis Obstet Gynecol. 1999;7:64–71.

    Article  CAS  PubMed  Google Scholar 

  7. Neuer A, Spandorfer SD, Giraldo P, Dieterle S, Rosenwaks Z, Witkin SS. The role of heat shock proteins in reproduction. Hum Reprod Update. 2000;6:149–59.

    Article  CAS  PubMed  Google Scholar 

  8. Follmann F, Olsen AW, Jensen KT, Hansen PR, Andersen P, Theisen M. Antigenic profiling of a Chlamydia trachomatis gene-expression library. J Infect Dis. 2008;197:897–905.

    Article  CAS  PubMed  Google Scholar 

  9. Brunham RC, Maclean IW, Binns B, Peeling RW. Chlamydia trachomatis: its role in tubal infertility. J Infect Dis. 1985;152:1275–82.

    CAS  PubMed  Google Scholar 

  10. Brunham RC, Peeling R, Maclean I, Kosseim ML, Paraskevas M. Chlamydia trachomatis-associated ectopic pregnancy: serologic and histologic correlates. J Infect Dis. 1992;165:1076–81.

    CAS  PubMed  Google Scholar 

  11. Toye B, Laferriere C, Claman P, Jessamine P, Peeling R. Association between antibody to the chlamydial heat-shock protein and tubal infertility. J Infect Dis. 1993;168:1236–40.

    CAS  PubMed  Google Scholar 

  12. Freidank HM, Clad A, Herr AS, Wiedmann-Al-Ahmad M, Jung B. Immune response to Chlamydia trachomatis heat-shock protein in infertile female patients and influence of Chlamydia pneumoniae antibodies. Eur J Clin Microbiol Infect Dis. 1995;14:1063–9.

    Article  CAS  PubMed  Google Scholar 

  13. Arno JN, Yuan Y, Cleary RE, Morrison RP. Serologic responses of infertile women to the 60-kd chlamydial heat shock protein (hsp60). Fertil Steril. 1995;64:730–5.

    CAS  PubMed  Google Scholar 

  14. Kimani J, Maclean IW, Bwayo JJ, MacDonald K, Oyugi J, Maitha GM, et al. Risk factors for Chlamydia trachomatis pelvic inflammatory disease among sex workers in Nairobi, Kenya. J Infect Dis. 1996;173:1437–44.

    CAS  PubMed  Google Scholar 

  15. Eckert LO, Hawes SE, Wolner-Hanssen P, Money DM, Peeling RW, Brunham RC, et al. Prevalence and correlates of antibody to chlamydial heat shock protein in women attending sexually transmitted disease clinics and women with confirmed pelvic inflammatory disease. J Infect Dis. 1997;175:1453–8.

    Article  CAS  PubMed  Google Scholar 

  16. Peeling RW, Kimani J, Plummer F, Maclean I, Cheang M, Bwayo J, et al. Antibody to chlamydial hsp60 predicts an increased risk for chlamydial pelvic inflammatory disease. J Infect Dis. 1997;175:1153–8.

    Article  CAS  PubMed  Google Scholar 

  17. Claman P, Honey L, Peeling RW, Jessamine P, Toye B. The presence of serum antibody to the chlamydial heat shock protein (CHSP60) as a diagnostic test for tubal factor infertility. Fertil Steril. 1997;67:501–4.

    Article  CAS  PubMed  Google Scholar 

  18. Ault KA, Statland BD, King MM, Dozier DI, Joachims ML, Gunter J. Antibodies to the chlamydial 60 kilodalton heat shock protein in women with tubal factor infertility. Infect Dis Obstet Gynecol. 1998;6:163–7.

    Article  CAS  PubMed  Google Scholar 

  19. Cortinas P, Munoz MG, Loureiro CL, Pujol FH. Follicular fluid antibodies to Chlamydia trachomatis and human heat shock protein-60 kDa and infertility in women. Arch Med Res. 2004;35:121–5.

    Article  CAS  PubMed  Google Scholar 

  20. den Hartog JE, Land JA, Stassen FR, Kessels AG, Bruggeman CA. Serological markers of persistent C. trachomatis infections in women with tubal factor subfertility. Hum Reprod. 2005;20:986–90.

    Article  Google Scholar 

  21. Betsou F, Sueur JM, Orfila J. Serological investigation of Chlamydia trachomatis heat shock protein 10. Infect Immun. 1999;67:5243–6.

    CAS  PubMed  Google Scholar 

  22. LaVerda D, Albanese LN, Ruther PE, Morrison SG, Morrison RP, Ault KA, et al. Seroreactivity to Chlamydia trachomatis Hsp10 correlates with severity of human genital tract disease. Infect Immun. 2000;68:303–9.

    Article  CAS  PubMed  Google Scholar 

  23. Betsou F, Borrego MJ, Guillaume N, Catry MA, Romao S, Machado-Caetano JA, et al. Cross-reactivity between Chlamydia trachomatis heat shock protein 10 and early pregnancy factor. Clin Diagn Lab Immunol. 2003;10:446–50.

    CAS  PubMed  Google Scholar 

  24. Jha R, Vardhan H, Bas S, Salhan S, Mittal A. Cervical epithelial cells from Chlamydia trachomatis-infected sites coexpress higher levels of chlamydial heat shock proteins 60 and 10 in infertile women than in fertile women. Gynecol Obstet Invest. 2009;68:160–6.

    Article  CAS  PubMed  Google Scholar 

  25. Reddy BS, Rastogi S, Das B, Salhan S, Verma S, Mittal A. Cytokine expression pattern in the genital tract of Chlamydia trachomatis positive infertile women—implication for T-cell responses. Clin Exp Immunol. 2004;137:552–8.

    Article  CAS  PubMed  Google Scholar 

  26. Bas S, Muzzin P, Vischer TL. Chlamydia trachomatis serology: diagnostic value of outer membrane protein 2 compared with that of other antigens. J Clin Microbiol. 2001;39:4082–5.

    Article  CAS  PubMed  Google Scholar 

  27. Perfettini JL, Ojcius DM, Andrews CW Jr, Korsmeyer SJ, Rank RG, Darville T. Role of proapoptotic BAX in propagation of Chlamydia muridarum (the mouse pneumonitis strain of Chlamydia trachomatis) and the host inflammatory response. J Biol Chem. 2003;278:9496–502.

    Article  CAS  PubMed  Google Scholar 

  28. Gerard HC, Krausse-Opatz B, Wang Z, Rudy D, Rao JP, Zeidler H, et al. Expression of Chlamydia trachomatis genes encoding products required for DNA synthesis and cell division during active versus persistent infection. Mol Microbiol. 2001;41:731–41.

    Article  CAS  PubMed  Google Scholar 

  29. Gerard HC, Freise J, Wang Z, Roberts G, Rudy D, Krauss-Opatz B, et al. Chlamydia trachomatis genes whose products are related to energy metabolism are expressed differentially in active vs. persistent infection. Microbes Infect. 2002;4:13–22.

    Article  CAS  PubMed  Google Scholar 

  30. de Gruijl TD, Bontkes HJ, van den Muysenberg AJ, van Oostveen JW, Stukart MJ, Verheijen RH, et al. Differences in cytokine mRNA profiles between premalignant and malignant lesions of the uterine cervix. Eur J Cancer. 1999;35:490–7.

    Article  PubMed  Google Scholar 

  31. Pizarro TT, Michie MH, Bentz M, Woraratanadharm J, Smith MF Jr, Foley E, et al. IL-18, a novel immunoregulatory cytokine, is up-regulated in Crohn’s disease: expression and localization in intestinal mucosal cells. J Immunol. 1999;162:6829–35.

    CAS  PubMed  Google Scholar 

  32. Sasu S, LaVerda D, Qureshi N, Golenbock DT, Beasley D. Chlamydia pneumoniae and chlamydial heat shock protein 60 stimulate proliferation of human vascular smooth muscle cells via toll-like receptor 4 and p44/p42 mitogen-activated protein kinase activation. Circ Res. 2001;89:244–50.

    Article  CAS  PubMed  Google Scholar 

  33. Jobin C, Haskill S, Mayer L, Panja A, Sartor RB. Evidence for altered regulation of I kappa B alpha degradation in human colonic epithelial cells. J Immunol. 1997;158:226–34.

    CAS  PubMed  Google Scholar 

  34. Samali A, Cai J, Zhivotovsky B, Jones DP, Orrenius S. Presence of a pre-apoptotic complex of pro-caspase-3, Hsp60 and Hsp10 in the mitochondrial fraction of jurkat cells. EMBO J. 1999;18:2040–8.

    Article  CAS  PubMed  Google Scholar 

  35. Chernesky M, Luinstra K, Sellors J, Schachter J, Moncada J, Caul O, et al. Can serology diagnose upper genital tract Chlamydia trachomatis infections? Studies on women with pelvic pain, with or without chlamydial plasmid DNA in endometrial biopsy tissue. Sex Transm Dis. 1998;25:14–9.

    Article  CAS  PubMed  Google Scholar 

  36. Paland N, Rajalingam K, Machuy N, Szczepek A, Wehrl W, Rudel T. NF-kappaB and inhibitor of apoptosis proteins are required for apoptosis resistance of epithelial cells persistently infected with Chlamydophila pneumoniae. Cell Microbiol. 2006;8:1643–55.

    Article  CAS  PubMed  Google Scholar 

  37. Kol A, Bourcier T, Lichtman AH, Libby P. Chlamydial and human heat shock protein 60s activate human vascular endothelium, smooth muscle cells, and macrophages. J Clin Invest. 1999;103:571–7.

    Article  CAS  PubMed  Google Scholar 

  38. Takenaka R, Yokota K, Ayada K, Mizuno M, Zhao Y, Fujinami Y, et al. Helicobacter pylori heat-shock protein 60 induces inflammatory responses through the Toll-like receptor-triggered pathway in cultured human gastric epithelial cells. Microbiology. 2004;150:3913–22.

    Article  CAS  PubMed  Google Scholar 

  39. Bulut Y, Faure E, Thomas L, Karahashi H, Michelsen KS, Equils O, et al. Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J Immunol. 2002;168:1435–40.

    CAS  PubMed  Google Scholar 

  40. Costa CP, Kirschning CJ, Busch D, Durr S, Jennen L, Heinzmann U, et al. Role of chlamydial heat shock protein 60 in the stimulation of innate immune cells by Chlamydia pneumoniae. Eur J Immunol. 2002;32:2460–70.

    Article  PubMed  Google Scholar 

  41. Da Costa CU, Wantia N, Kirschning CJ, Busch DH, Rodriguez N, Wagner H, et al. Heat shock protein 60 from Chlamydia pneumoniae elicits an unusual set of inflammatory responses via Toll-like receptor 2 and 4 in vivo. Eur J Immunol. 2004;34:2874–84.

    Article  PubMed  Google Scholar 

  42. Vabulas RM, Ahmad-Nejad P, da Costa C, Miethke T, Kirschning CJ, Hacker H, et al. Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem. 2001;276:31332–9.

    Article  CAS  PubMed  Google Scholar 

  43. Fan W, Ha T, Li Y, Ozment-Skelton T, Williams DL, Kelley J, et al. Overexpression of TLR2 and TLR4 susceptibility to serum deprivation-induced apoptosis in CHO cells. Biochem Biophys Res Commun. 2005;337:840–8.

    Article  CAS  PubMed  Google Scholar 

  44. Janssens S, Beyaert R. A universal role for MyD88 in TLR/IL-1R-mediated signaling. Trends Biochem Sci. 2002;27:474–82.

    Article  CAS  PubMed  Google Scholar 

  45. Aliprantis AO, Yang RB, Weiss DS, Godowski P, Zychlinsky A. The apoptotic signaling pathway activated by Toll-like receptor-2. EMBO J. 2000;19:3325–36.

    Article  CAS  PubMed  Google Scholar 

  46. Cerretti DP, Hollingsworth LT, Kozlosky CJ, Valentine MB, Shapiro DN, Morris SW, et al. Molecular characterization of the gene for human interleukin-1 beta converting enzyme (IL1BC). Genomics. 1994;20:468–73.

    Article  CAS  PubMed  Google Scholar 

  47. Ghayur T, Banerjee S, Hugunin M, Butler D, Herzog L, Carter A, et al. Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production. Nature. 1997;386:619–23.

    Article  CAS  PubMed  Google Scholar 

  48. Lu H, Shen C, Brunham RC. Chlamydia trachomatis infection of epithelial cells induces the activation of caspase-1 and release of mature IL-18. J Immunol. 2000;165:1463–9.

    CAS  PubMed  Google Scholar 

  49. Cheng W, Shivshankar P, Li Z, Chen L, Yeh IT, Zhong G. Caspase-1 contributes to Chlamydia trachomatis-induced upper urogenital tract inflammatory pathologies without affecting the course of infection. Infect Immun. 2008;76:515–22.

    Article  CAS  PubMed  Google Scholar 

  50. Gao LY, Kwaik YA. The modulation of host cell apoptosis by intracellular bacterial pathogens. Trends Microbiol. 2000;8:306–13.

    Article  CAS  PubMed  Google Scholar 

  51. Hacker G, Fischer SF. Bacterial anti-apoptotic activities. FEMS Microbiol Lett. 2002;211:1–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the Indian Council of Medical Research for providing financial assistance to R.J. and H.V. in the form of a research fellowship. We also thank Mr. Shashi Kant for providing technical assistance and microarray data analysis at the International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aruna Mittal.

Additional information

Responsible Editor: Kumar Visvanathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jha, R., Vardhan, H., Bas, S. et al. Chlamydia trachomatis heat shock proteins 60 and 10 induce apoptosis in endocervical epithelial cells. Inflamm. Res. 60, 69–78 (2011). https://doi.org/10.1007/s00011-010-0237-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-010-0237-x

Keywords

Navigation