Skip to main content
Log in

Toll-like receptor 4 signaling in dysfunction of cardiac microvascular endothelial cells under hypoxia/reoxygenation

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

This study was designed to detect the role of Toll-like receptor 4 (TLR4) signaling in the dysfunction of cardiac microvascular endothelial cells (CMECs) after hypoxia/reoxygenation (H/R).

Methods

The cell viability of CMECs was measured by MTT assay. The migration of CMECs was detected by cell scratch wound assay. The expressions of TLR4, nuclear factor-kappa B (NF-κB) and eNOS were analyzed by Western blot. Secretions of nitric oxide (NO) and tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) were determined by NO detection kit and ELISA.

Results

Lipopolysaccharide (LPS) incubation increased the expressions of TLR4, NF-κB, IL-6 and TNF-α in CMECs (P < 0.05 vs. control). The CMECs after H/R injury had impaired cell viability (P < 0.01 vs. control) and migration ability (P < 0.05 vs. control). Moreover, the expressions of TLR4, NF-κB, IL-6 and TNF-α were elevated after H/R in CMECs (P < 0.01 vs. control), while NO and the eNOS expression were significantly decreased. In contrast, administration of the TLR4-neutralizing antibody MTS510 prior to H/R injury down-regulated the expressions of IL-6 and TNF-α and attenuated the dysfunction of CMECs.

Conclusion

TLR4 and its signaling components can be activated by LPS and H/R in CMECs. Blocking the TLR4 signal pathway before H/R injury attenuates CMEC dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sohn HY, Krotz F, Gloe T, Keller M, Theisen K, Klauss V, et al. Differential regulation of xanthine and NAD(P)H oxidase by hypoxia in human umbilical vein endothelial cells. Role of nitric oxide and adenosine. Cardiovasc Res. 2003;58:638–46.

    Article  CAS  PubMed  Google Scholar 

  2. Sodha NR, Boodhwani M, Clements RT, Feng J, Xu SH, Sellke FW. Coronary microvascular dysfunction in the setting of chronic ischemia is independent of arginase activity. Microvasc Res. 2008;75:238–46.

    Article  CAS  PubMed  Google Scholar 

  3. Li J-M, Mullen AM, Shah AM. Phenotypic properties and characteristics of superoxide production by mouse coronary microvascular endothelial cells. J Mol Cell Cardiol. 2001;33:1119–31.

    Article  CAS  PubMed  Google Scholar 

  4. Scarabelli T, Stephanou A, Rayment N, Pasini E, Comini L, Curello S, et al. Apoptosis of endothelial cells precedes myocyte cell apoptosis in ischemia/reperfusion injury. Circulation. 2001;104:253–6.

    CAS  PubMed  Google Scholar 

  5. Rossig L, Dimmeler S, Zeiher AM. Apoptosis in the vascular wall and atherosclerosis. Basic Res Cardiol. 2001;96:11–22.

    Article  CAS  PubMed  Google Scholar 

  6. Akira S. Toll-like receptor signaling. J Biol Chem. 2003;278:38105–8.

    Article  CAS  PubMed  Google Scholar 

  7. Johnson GB, Brunn GJ, Platt JL. Activation of mammalian toll-like receptors by endogenous agonists. Crit Rev Immunol. 2003;23:15.

    Article  CAS  PubMed  Google Scholar 

  8. Kaczorowski DJ, Nakao A, Mollen KP, Vallabhaneni R, Sugimoto R, Kohmoto J, et al. Toll-like receptor 4 mediates the early inflammatory response after cold ischemia/reperfusion. Transplantation. 2007;84:1279–87.

    Article  CAS  PubMed  Google Scholar 

  9. Cha J, Wang Z, Ao L, Zou N, Dinarello CA, Banerjee A, et al. Cytokines link toll-like receptor 4 signaling to cardiac dysfunction after global myocardial ischemia. Ann Thorac Surg. 2008;85:1678–85.

    Article  PubMed  Google Scholar 

  10. Takeishi Y, Kubota I. Role of Toll-like receptor mediated signaling pathway in ischemic heart. Front Biosci. 2009;14:2553–8.

    Article  CAS  PubMed  Google Scholar 

  11. Chao W. Toll-like receptor signaling: a critical modulator of cell survival and ischemic injury in the heart. Am J Physiol Heart Circ Physiol. 2009;296:H1–12.

    Article  CAS  PubMed  Google Scholar 

  12. Oyama J Jr, Blais C, Liu X, Pu M, Kobzik L, Kelly RA, et al. Reduced myocardial ischemia-reperfusion injury in Toll-like receptor 4-deficient mice. Circulation. 2004;109:784–9.

    Article  CAS  PubMed  Google Scholar 

  13. Kim SC, Ghanem A, Stapel H, Tiemann K, Knuefermann P, Hoeft A, et al. Toll-like receptor 4 deficiency: smaller infarcts, but no gain in function. BMC Physiol. 2007;7:5.

    Article  PubMed  Google Scholar 

  14. Stapel H, Kim SC, Osterkamp S, Knuefermann P, Hoeft A, Meyer R, et al. Toll-like receptor 4 modulates myocardial ischaemia-reperfusion injury: role of matrix metalloproteinases. Eur J Heart Fail. 2006;8:665–72.

    Article  CAS  PubMed  Google Scholar 

  15. Shimamoto A, Chong AJ, Yada M, Shomura S, Takayama H, Fleisig AJ, et al. Inhibition of toll-like receptor 4 with eritoran attenuates myocardial ischemia–reperfusion injury. Circulation. 2006;114:I270–4.

    Article  PubMed  Google Scholar 

  16. Curtiss LK, Tobias PS. Emerging role of toll-like receptors in atherosclerosis. J Lipid Res. 2009;50(Suppl):S340–5.

    Article  PubMed  Google Scholar 

  17. Erickson B, Sperber K, Frishman WH. Toll-like receptors: new therapeutic targets for the treatment of atherosclerosis, acute coronary syndromes, and myocardial failure. Cardiol Rev. 2008;16:273–9.

    Article  PubMed  Google Scholar 

  18. Riad A, Jager S, Sobirey M, Escher F, Yaulema-Riss A, Westermann D, et al. Toll-like receptor-4 modulates survival by induction of left ventricular remodeling after myocardial infarction in mice. J Immunol. 2008;180:6954–61.

    CAS  PubMed  Google Scholar 

  19. Satoh M, Shimoda Y, Maesawa C, Akatsu T, Ishikawa Y, Minami Y, et al. Activated toll-like receptor 4 in monocytes is associated with heart failure after acute myocardial infarction. Int J Cardiol. 2006;109:226–34.

    Article  PubMed  Google Scholar 

  20. Methe H, Kim JO, Kofler S, Weis M, Nabauer M, Koglin J. Expansion of circulating toll-like receptor 4-positive monocytes in patients with acute coronary syndrome. Circulation. 2005;111:2654–61.

    Article  CAS  PubMed  Google Scholar 

  21. Nishida M, Carley WW, Gerritsen ME, Ellingsen O, Kelly RA, Smith TW. Isolation and characterization of human and rat cardiac microvascular endothelial cells. Am J Physiol. 1993;264:H639–52.

    CAS  PubMed  Google Scholar 

  22. Wei L, Yin Z, Yuan Y, Hwang A, Lee A, Sun D, et al. A PKC-beta inhibitor treatment reverses cardiac microvascular barrier dysfunction in diabetic rats. Microvasc Res. 2010;80:158–65.

    Google Scholar 

  23. Hu Q, Ziegelstein RC. Hypoxia/reoxygenation stimulates intracellular calcium oscillations in human aortic endothelial cells. Circulation. 2000;102:2541–7.

    CAS  PubMed  Google Scholar 

  24. Yin T, Ma X, Zhao L, Cheng K, Wang H. Angiotensin II promotes NO production, inhibits apoptosis and enhances adhesion potential of bone marrow-derived endothelial progenitor cells. Cell Res. 2008;18:792–9.

    Article  CAS  PubMed  Google Scholar 

  25. Yang B, Graham L, Dikalov S, Mason RP, Falck JR, Liao JK, et al. Overexpression of cytochrome P450 CYP2J2 protects against hypoxia-reoxygenation injury in cultured bovine aortic endothelial cells. Mol Pharmacol. 2001;60:310–20.

    CAS  PubMed  Google Scholar 

  26. Wei L, Sun D, Yin Z, Yuan Y, Hwang A, Zhang Y, et al. A PKC-beta inhibitor protects against cardiac microvascular ischemia reperfusion injury in diabetic rats. Apoptosis. 2010;15:488–98.

    Article  CAS  PubMed  Google Scholar 

  27. Faure E, Thomas L, Xu H, Medvedev A, Equils O, Arditi M. Bacterial lipopolysaccharide and IFN-gamma induce toll-like receptor 2 and Toll-like receptor 4 expression in human endothelial cells: role of NF-kappa B activation. J Immunol. 2001;166:2018–24.

    CAS  PubMed  Google Scholar 

  28. Ichikawa H, Flores S, Kvietys PR, Wolf RE, Yoshikawa T, Granger DN, et al. Molecular mechanisms of anoxia/reoxygenation-induced neutrophil adherence to cultured endothelial cells. Circ Res. 1997;81:922–31.

    CAS  PubMed  Google Scholar 

  29. Lum H, Barr DA, Shaffer JR, Gordon RJ, Ezrin AM, Malik AB. Reoxygenation of endothelial cells increases permeability by oxidant-dependent mechanisms. Circ Res. 1992;70:991–8.

    CAS  PubMed  Google Scholar 

  30. Frantz S, Ertl G, Bauersachs J. Mechanisms of disease: Toll-like receptors in cardiovascular disease. Nat Clin Pract Cardiovasc Med. 2007;4:444–54.

    Article  CAS  PubMed  Google Scholar 

  31. Thompson JE, Phillips RJ, Erdjument-Bromage H, Tempst P, Ghosh S. I kappa B-beta regulates the persistent response in a biphasic activation of NF-kappa B. Cell. 1995;80:573–82.

    Article  CAS  PubMed  Google Scholar 

  32. Schmidt C, Peng B, Li Z, Sclabas GM, Fujioka S, Niu J, et al. Mechanisms of proinflammatory cytokine-induced biphasic NF-kappaB activation. Mol Cell. 2003;12:1287–300.

    Article  CAS  PubMed  Google Scholar 

  33. Frantz S, Kobzik L, Kim YD, Fukazawa R, Medzhitov R, Lee RT, et al. Toll4 (TLR4) expression in cardiac myocytes in normal and failing myocardium. J Clin Invest. 1999;104:271–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (NSFC, No. 30970845, 30770784) and Xijing Research Boosting Program (No. XJZT08Z04 XJZT07Z05).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haichang Wang or Feng Cao.

Additional information

Responsible Editor: Kumar Visvanathan.

Z. Zhang, W. Li and D. Sun contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Li, W., Sun, D. et al. Toll-like receptor 4 signaling in dysfunction of cardiac microvascular endothelial cells under hypoxia/reoxygenation. Inflamm. Res. 60, 37–45 (2011). https://doi.org/10.1007/s00011-010-0232-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-010-0232-2

Keywords

Navigation