Skip to main content
Log in

Protective effect of gastrin-releasing peptide receptor antagonist in carrageenan-induced pleural inflammation in rats

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

We report the effects of the gastrin-releasing peptide (GRP) receptor antagonist RC-3095 in an acute inflammation model induced by carrageenan.

Methods

Male Wistar rats received saline or saline containing 2% λ-carrageenan into the pleural cavity, with some also receiving RC-3095 3 mg/kg subcutaneously, immediately after surgery. Four hours later, the rats were killed and pleural exudate was obtained for evaluation of total cell count, lactate dehydrogenase activity, total protein, cytokines analysis and nitrite/nitrate concentrations; myeloperoxidase (MPO) activity and oxidative stress were evaluated in the lung.

Results

RC-3095 exhibited pronounced anti-inflammatory actions by inhibition of leukocyte influx and blockade of MPO, nitrite/nitrate and cytokine levels. Moreover, the results showed that RC-3095 elicits action against oxidative damage in lipids and proteins, as well as increasing cell viability.

Conclusion

The present findings suggest that GRP plays a role in acute inflammation that can be related with the reduction of oxidative damage and that it could be effective in therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lentsch AB, Ward PA. Regulation of experimental lung inflammation. Respir Physiol. 2001;128:17–21.

    Article  CAS  PubMed  Google Scholar 

  2. Vinegar R, Truax JF, Selph JL, Voelker FA. Pathway of onset, development, and decay of carrageenan pleurisy in the rat. Fed Proc. 1982;41:2588–95.

    CAS  PubMed  Google Scholar 

  3. Salvemini D, Wang ZQ, Wyatt P, Bourdon DM, Marino MH, Manning PT, et al. Nitric oxide: a key mediator in the early and late phase of carrageenan-induced rat paw inflammation. Br J Pharmacol. 1996;118:829–37.

    CAS  PubMed  Google Scholar 

  4. Salvemini D, Masferrer JL. Interactions of nitric oxide witch cyclooxygenase: in vitro, ex vivo, and in vivo studies. Methods Enzymol. 1996;269:12–25.

    Article  CAS  PubMed  Google Scholar 

  5. Fialkow L, Wang Y, Downey GP. Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radic Biol Med. 2007;42:153–64.

    Article  CAS  PubMed  Google Scholar 

  6. Guo RF, Ward PA. Role of oxidants in lung injury during sepsis. Antioxid Redox Signal. 2007;9:02–1991.

    Google Scholar 

  7. Medina S, Del Rio M, Victor VM, Hernánz A, De la Fuente M. Changes with ageing in the modulation of murine lymphocyte chemotaxis by CCK-8S, GRP and NPY. Mech Ageing Dev. 1998;102:249–61.

    Article  CAS  PubMed  Google Scholar 

  8. Medina S, Rio MD, De la Cuadra B, Fuente MD. Age-related changes in the modulatory action of gastrin-releasing peptide, neuropeptide Y and sulfated cholecystokinin octapeptide in the proliferation of murine lymphocytes. Neuropeptides. 1999;33:173–9.

    Article  CAS  PubMed  Google Scholar 

  9. Genton L, Kudsk KA. Interactions between the enteric nervous system and the immune system: role of neuropeptides and nutrition. Am J Surg. 2003;186:253–8.

    Article  CAS  PubMed  Google Scholar 

  10. Sunday ME, Yoder BA, Cuttitta F, Haley KJ, Emanuel RL. Bombesin like peptide mediates lung injury in a baboon model of bronchopulmonary dysplasia. J Clin Invest. 1998;102:584–94.

    Article  CAS  PubMed  Google Scholar 

  11. Subramaniam M, Sugyiama K, Coy DH, Kong Y, Miller YE, Weller PF, et al. Bombesin-like peptides and mast cell responses: relevance to bronchopulmonary dysplasia? Am J Respir Crit Care Med. 2003;168:601–11.

    Article  PubMed  Google Scholar 

  12. Sunday ME. Neuropeptides and lung development. In: McDonald JA, editor. Lung growth and development. New York: Marcel Dekker; 1997. p. 401–94.

    Google Scholar 

  13. Grimsholm O, Rantapaa-Dahlqvist S, Forsgren S. Levels of gastrin-releasing peptide and substance P in synovial fluid and serum correlate with levels of cytokines in rheumatoid arthritis. Arthritis Res Ther. 2005;7:416–26.

    Article  Google Scholar 

  14. Petronilho F, Roesler R, Schwartsmann G, Dal-Pizzol F. Gastrin-releasing peptide receptor as a molecular target for inflammatory diseases. Inflamm Allergy Drug Targets. 2007;6:197–200.

    Article  CAS  PubMed  Google Scholar 

  15. Dal-Pizzol F, Di Leone LP, Ritter C, Martins MR, Reinke A, Pens Gelain D, et al. Gastrin-releasing peptide receptor antagonist effects on an animal model of sepsis. Am J Respir Crit Care Med. 2006;173:84–90.

    Article  CAS  PubMed  Google Scholar 

  16. Oliveira PG, Brenol CV, Edelweiss MI, Brenol JC, Petronilho F, Roesler R, et al. Effects of an antagonist of the bombesin/gastrin-releasing peptide receptor on complete Freund’s adjuvant-induced arthritis in rats. Peptides. 2008;29:1726–31.

    Article  CAS  PubMed  Google Scholar 

  17. Radulovic S, Cai R-Z, Serfozo P, Groot K, Redding TW, Pinski J, et al. Biological effects and receptor binding affinities of new pseudononapeptide bombesin/GRP receptor antagonists with N-terminal d-Trp or d-Tpi. Int J Pept Protein Res. 1991;38:593–600.

    Article  CAS  PubMed  Google Scholar 

  18. Vinegar R, Traux JF, Selph JL. Some quantitative temporal characteristics of carrageenan-induced pleurisy in the rat. Proc Soc Exp Biol Med. 1943;143:711–4.

    Google Scholar 

  19. Lowry OH, Rosebrough AL, Randal RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75.

    CAS  PubMed  Google Scholar 

  20. Green IC, Wagner DA, Glowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite and [15N] nitrate in biological fluids. Anal Biochem. 1982;126:131–8.

    Article  CAS  PubMed  Google Scholar 

  21. De Young LM, Kheifets JB, Ballaron SJ, Young JM. Edema and cell infiltration in the phorbol ester-treated mouse ear are temporally separate and can be differentially modulated by pharmacologic agents. Agents Actions. 1989;26:335–41.

    Article  PubMed  Google Scholar 

  22. Draper HH, Hadley M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 1990;186:421–31.

    Article  CAS  PubMed  Google Scholar 

  23. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990;186:464–78.

    Article  CAS  PubMed  Google Scholar 

  24. Riddles PW, Blakeley RL, Zerner B. Reassessment of Ellman’s reagent. Methods Enzymol. 1983;91:49–60.

    Article  CAS  PubMed  Google Scholar 

  25. Kroegel C, Antony VB. Immunobiology of pleural inflammation: potential implications for pathogenesis, diagnosis and therapy. Eur Respir J. 1997;10:2411–8.

    Article  CAS  PubMed  Google Scholar 

  26. Segura RM. Useful clinical biological markers in diagnosis of pleural effusions in children. Paediatr Respire Rev. 2004;5:205–12.

    Article  Google Scholar 

  27. Antony VB, Godbey SW, Kunkel SL, Hott JW, Hartman DL, Burdick MD, et al. Recruitment of inflammatory cells to the pleura space: chemotactic cytokines IL-8, and monocyte chemotactic peptide-1 in human pleural fluids. J Immunol. 1993;151:7216–23.

    CAS  PubMed  Google Scholar 

  28. Romano M, Sironi M, Toniatti C, Polentarutti N, Fruscella P, Ghezzi P, et al. Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity. 1997;6:315–25.

    Article  CAS  PubMed  Google Scholar 

  29. Alonzi T, Fattori E, Cappelletti M, Ciliberto G, Poli V. Impaired stat3 activation following localized inflammatory stimulus in IL-6 deficient mice. Cytokine. 1998;10:13–8.

    Article  CAS  PubMed  Google Scholar 

  30. Utsunomiya I, Nagai S, Oh-ishi S. Sequential appearance of IL-1 and IL-6 activities in rat carrageenan-induced pleurisy. J Immunol. 1991;147:1803–9.

    CAS  PubMed  Google Scholar 

  31. Oh-Ishi S, Hayashi I, Hayashi M, Yamaki K, Utsunomiya I. Pharmacological demonstration of inflammatory mediators using experimental inflammatory models: rat pleurisy induced by carrageenin and phorbol myristate acetate. Dermatologica. 1989;179:68–71.

    Article  PubMed  Google Scholar 

  32. Tracey WR, Nakane M, Kuk J, Budzik G, Klinghofer V, Harris R. The nitric oxide synthase inhibitor, l-NG-monomethylarginine, reduces carrageenan-induced pleurisy in the rat. J Pharmacol Exp Ther. 1995;273:1295–9.

    CAS  PubMed  Google Scholar 

  33. Wei XQ, Charles IG, Smith A, Ure J, Feng GJ, Huang FP, et al. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature. 1995;375:408–11.

    Article  CAS  PubMed  Google Scholar 

  34. Cuzzocrea S, Zingarelli B, Costantino G, Caputi AP. Beneficial effects of Mn(III)tetrakis (4-benzoic acid) porphyrin (MnTBAP), a superoxide dismutase mimetic, in carrageenan-induced pleurisy. Free Radic Biol Med. 1999;26:25–33.

    Article  CAS  PubMed  Google Scholar 

  35. Cuzzocrea S, Zingarelli B, Hake P, Salzman AL, Szabó C. Antiinflammatory effects of mercaptoethylguanidine, a combined inhibitor of nitric oxide synthase and peroxynitrite scavenger, in carrageenan-induced models of inflammation. Free Radic Biol Med. 1998;24:450–9.

    Article  CAS  PubMed  Google Scholar 

  36. Szabo C, Wu CC, Gross SS, Thiemermann C, Vane JR. Interleukin-1 contributes to the induction of nitric oxide synthase by endotoxin in vivo. Eur J Pharmacol. 1993;250:157–60.

    Article  CAS  PubMed  Google Scholar 

  37. Jin CY, Moon DO, Lee KJ, Kim MO, Lee JD, Choi YH, et al. Piceatannol attenuates lipopolysaccharide-induced NF-kappaB activation and NFkappaB-related proinflammatory mediators in BV2 microglia. Pharmacol Res. 2006;54:461–7.

    Article  CAS  PubMed  Google Scholar 

  38. Mariotto S, Esposito E, Di Paola R, Ciampa A, Mazzon E, de Prati AC, et al. Protective effect of Arbutus unedo aqueous extract in carrageenan-induced lung inflammation in mice. Pharmacol Res. 2008;57:110–24.

    Article  PubMed  Google Scholar 

  39. Yasui K, Baba A. Therapeutic potential of superoxide dismutase (SOD) for resolution of inflammation. Inflamm Res. 2006;55:359–63.

    Article  CAS  PubMed  Google Scholar 

  40. Cuzzocrea S, McDonald MC, Filipe HM, Costantino G, Mazzon E, Santagati S, et al. Effects of tempol, a membrane-permeable radical scavenger, in a rodent model of carrageenan-induced pleurisy. Eur J Pharmacol. 2000;390:209–22.

    Article  CAS  PubMed  Google Scholar 

  41. Nardi GM, Siqueira Junior JM, Delle Monache F, Pizzolatti MG, Ckless K, Ribeiro-do-Valle RM. Antioxidant and anti-inflammatory effects of products from Croton celtidifolius Bailon on carrageenan-induced pleurisy in rats. Phytomedicine. 2007;14:115–22.

    Article  CAS  PubMed  Google Scholar 

  42. Bhattacharyya S, Dudeja PK, Tobacman JK. Carrageenan-induced NFkappaB activation depends on distinct pathways mediated by reactive oxygen species and Hsp27 or by Bcl10. Biochim Biophys Acta. 2008;1780:973–82.

    CAS  PubMed  Google Scholar 

  43. Menegazzi M, Di Paola R, Mazzon E, Genovese T, Crisafulli C, Dal Bosco M, et al. Glycyrrhizin attenuates the development of carrageenan-induced lung injury in mice. Pharmacol Res. 2008;58:22–31.

    Article  CAS  PubMed  Google Scholar 

  44. Aksenov MY, Markesbery WR. Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett. 2001;302:141–5.

    Article  CAS  PubMed  Google Scholar 

  45. Kirkham P, Rahman I. Oxidative stress in asthma and COPD: antioxidants as a therapeutic strategy. Pharmacol Ther. 2006;111:476–94.

    Article  CAS  PubMed  Google Scholar 

  46. Fröde-Saleh TS, Calixto JB. Synergistic antiinflammatory effect of NF-kappaB inhibitors and steroidal or non steroidal antiinflammatory drugs in the pleural inflammation induced by carrageenan in mice. Inflamm Res. 2000;49:330–7.

    Article  PubMed  Google Scholar 

  47. Levine L, Lucci JA, Pazdrak B, Cheng JZ, Guo YS, Townsend CM Jr, et al. Bombesin stimulates nuclear factor κB activation and expression of proangiogenic factors in prostate cancer cells. Cancer Res. 2003;63:3495–502.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Universidade do Extremo Sul Catarinense (UNESC), Coordenação de Aperfeiçoamento de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Dal-Pizzol.

Additional information

Responsible Editor: I. Ahnfelt-Rønne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petronilho, F., de Souza, B., Vuolo, F. et al. Protective effect of gastrin-releasing peptide receptor antagonist in carrageenan-induced pleural inflammation in rats. Inflamm. Res. 59, 783–789 (2010). https://doi.org/10.1007/s00011-010-0190-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-010-0190-8

Keywords

Navigation