Skip to main content

Advertisement

Log in

Flavonoid combinations cause synergistic inhibition of proinflammatory mediator secretion from lipopolysaccharide-induced RAW 264.7 cells

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objectives

We evaluated several flavonoid combinations for synergy in the inhibition of proinflammatory mediator synthesis in the RAW 264.7 cellular model of inflammation.

Methods

The inhibitory effect of chrysin, kaempferol, morin, silibinin, quercetin, diosmin and hesperidin upon nitric oxide (NO), prostaglandin E2 (PGE2) and tumour necrosis factor-α (TNF-α) secretion from the LPS-induced RAW 264.7 monocytic macrophage was assessed and IC50 values obtained. Flavonoids that showed reasonable inhibitory effects in at least two out of the three assays were combined in a series of fixed IC50 ratios and reassessed for inhibition of NO, PGE2 and TNF-α. Dose–response curves were generated and interactions were analysed using isobolographic analysis.

Results

The experiments showed that only chrysin, kaempferol, morin, and silibinin were potent enough to produce dose–response effects upon at least two out of the three mediators assayed. Combinations of these four flavonoids showed that several combinations afforded highly significant synergistic effects.

Conclusions

Some flavonoids are synergistic in their anti-inflammatory effects when combined. In particular chrysin and kaempferol significantly synergised in their inhibitory effect upon NO, PGE2 and TNF-α secretion. These findings open further avenues of research into combinatorial therapeutics of inflammatory-related diseases and the pharmacology of flavonoid synergy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

NO:

Nitric oxide

PGE2 :

Prostaglandin E2

TNF-α:

Tumour necrosis factor-α

LPS:

Lipopolysaccharide

IC50 :

Inhibitory concentration 50

DMSO:

Dimethyl sulfoxide

DMEM:

Dulbecco’s modified eagle media

MTT:

3-[4, 5-Dimethyl-2-thiazolyl]-2,5-diphenyl tetrazolium bromide

FBS:

Foetal bovine serum

L-NAME:

N-nitro-l-arginine methyl ester

MRSA:

Methicillin-resistant Staphylococcus aureus

MIC:

Minimal inhibitory concentration

EGCG:

Epigallocatechin gallate

NSAID:

Non-steroidal anti-inflammatory drug

MAPK:

Mitogen-activated protein kinase

IRF-1:

Interferon regulatory factor-1

ERK:

Extracellular-regulated kinase

JNK:

c-Jun N-terminal kinase

LDL:

Low density lipoprotein

References

  1. Kim HP, Son KH, Chang HW, Kang SS. Anti-inflammatory plant flavonoids and cellular action mechanisms. J Pharmacol Sci. 2004;96:229–45.

    Article  CAS  PubMed  Google Scholar 

  2. Williamson EM. Synergy and other interactions in phytomedicines. Phytomed. 2001;8:401–9.

    Article  CAS  Google Scholar 

  3. Ting-Chao Chou. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006;58:621–81.

    Article  Google Scholar 

  4. Scott EN, Gescher AJ, Steward WP, Brown K. Development of dietary phytochemical chemopreventive agents: biomarkers and choice of dose for early clinical trials. Cancer Prev Res (Phila Pa). 2009;2:525–30.

    CAS  Google Scholar 

  5. Duarte J, Perez-vizcaino F, Jimenez J, Tamargo J, Zarzuelo A. Flavonoids and cardiovascular diseases. Stud Nat Prod Chem. 2001;25:565–605.

    Article  CAS  Google Scholar 

  6. Galvez J, De Sanchez Medina F, Jimenez J, Zarzuelo A. Effects of flavonoids on gastrointestinal disorders. Stud Nat Prod Chem. 2001;25:607–49.

    Article  CAS  Google Scholar 

  7. Schroeter H, Boyd C, Spencer JPE, Williams RJ, Cadenas E, Rice-Evans C. MAPK signaling in neurodegeneration: influences of flavonoids and of nitric oxide. Neurobiol Aging. 2002;23:861–80.

    Article  CAS  PubMed  Google Scholar 

  8. Gohel MS, Davies AH. Pharmacological agents in the treatment of venous disease: an update of the available evidence. Curr Vasc Pharmacol. 2009;7:303–8.

    Article  CAS  PubMed  Google Scholar 

  9. Sato Y, Shibata H, Arai T, Yamamoto A, Okimura Y, Arakaki N, et al. Variation in synergistic activity by flavone and its related compounds on the increased susceptibility of various strains of methicillin-resistant Staphylococcus aureus to β-lactam antibiotics. Int J Antimicro Ag. 2004;24:28–35.

    Article  Google Scholar 

  10. Scambia G, De Vincenzo R, Ranelletti FO, Benedetti Panici P, Ferrandina G, D’Agostino G, et al. Antiproliferative effect of silybin on gynaecological malignancies: synergism with cisplatin and doxorubicin. Eur J Canc. 1996;32A:877–82.

    Article  CAS  Google Scholar 

  11. Milde J, Elstner EF, Graßmann J. Synergistic inhibition of low-density lipoprotein oxidation by rutin, γ-terpinene, and ascorbic acid. Phytomed. 2004;11:105–13.

    Article  CAS  Google Scholar 

  12. Wang Q, Han Y, Xue H. Ligands of the GABAA receptor benzodiazepine binding site. CNS Drug Rev. 1999;5:124–44.

    Google Scholar 

  13. Medina JH, Viola H, Wolfman C, Marder M, Wasowski C, Calvo D, et al. Overview. Flavonoids: a new family of benzodiazepine receptor ligands. Neurochem Res. 1997;22:419–25.

    CAS  Google Scholar 

  14. Marder M, Paladini AC. GABAA-receptor ligands of flavonoid structure. Curr Top Med Chem. 2002;2:853–67.

    Article  CAS  PubMed  Google Scholar 

  15. Fernandez SP, Wasowski C, Paladini AC, Marder M. Synergistic interaction between hesperidin, a natural flavonoid, and diazepam. Eur J Pharmacol. 2005;512:189–98.

    Article  CAS  PubMed  Google Scholar 

  16. Murakami A, Takahashi D, Hagihara K, Koshimizu K, Ohigashi H. Combinatorial effects of nonsteroidal anti-inflammatory drugs and food constituents on production of prostaglandin E2 and tumour necrosis factor–α in RAW 264.7 murine macrophages. Biosci Biotechnol Biochem. 2003;67:1056–62.

    Article  CAS  PubMed  Google Scholar 

  17. Tallarida RJ, Porreca F, Cowan A. Statistical analysis of drug-drug and site-site interactions with isobolograms. Life Sci. 1989;45:947–61.

    Article  CAS  PubMed  Google Scholar 

  18. Pinardi G, Sierralta F, Miranda HF. Interaction between the antinociceptive effect of ketoprofen and adrenergic modulatory systems. Inflamm. 2001;25:233–9.

    Article  CAS  Google Scholar 

  19. Tallarida RJ. Drug synergism: its detection and applications. J Pharmacol Exp Ther. 2001;298:865–72.

    CAS  PubMed  Google Scholar 

  20. Dehmlow C, Murawski N, De Groot H. Scavenging of reactive oxygen species and inhibition of arachidonic acid metabolism by silibinin in human cells. Life Sci. 1996;58:l591–1600.

    Article  Google Scholar 

  21. Wadsworth TL, McDonald TL, Koop DR. Effects of Ginkgo biloba extract (EGb 761) and quercetin on lipopolysaccharide-induced signaling pathways involved in the release of tumor necrosis factor-α. Biochem Pharmacol. 2001;62:963–74.

    Article  CAS  PubMed  Google Scholar 

  22. Cho SY, Park SJ, Kwon MJ, Jeong TS, Bok SH, Choi WY, et al. Quercetin suppresses proinflammatory cytokines production through MAP kinases and NF-κB pathway in lipopolysaccharide-stimulated macrophage. Mol Cell Biochem. 2003;243:153–60.

    Article  CAS  PubMed  Google Scholar 

  23. Takano-Ishikawa Y, Goto M, Yamaki K. Structure–activity relations of inhibitory effects of various flavonoids on lipopolysaccharide-induced prostaglandin E2 production in rat peritoneal macrophages: Comparison between subclasses of flavonoids. Phytomed. 2006;13:310–7.

    Article  CAS  Google Scholar 

  24. Hamalainen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E. Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-κB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-κB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm 2007;45673–45683.

  25. Park HH, Lee S, Son HY, Park SB, Kim MS, Choi EJ, et al. Flavonoids inhibit histamine release and expression of proinflammatory cytokines in mast cells. Arch Pharm Res. 2008;31:1303–11.

    Article  CAS  PubMed  Google Scholar 

  26. Crespo I, García-Mediavilla MV, Gutiérrez B, Sánchez-Campos S, Tuñón MJ, González-Gallego J. A comparison of the effects of kaempferol and quercetin on cytokine-induced pro-inflammatory status of cultured human endothelial cells. Br J Nutr. 2008;100:968–76.

    Article  CAS  PubMed  Google Scholar 

  27. Hecker M, Priess C, Klemm P, Brusse R. Inhibition by antioxidants of nitric oxide synthase expression in murine macrophages; role of nuclear factor kappa B and interferon regulatory factor 1. Br J Pharmacol. 1996;118:21178–84.

    Google Scholar 

  28. Chen CC, Chow MP, Huang WC, Lin YC, Chang YJ. Flavonoids inhibit tumor necrosis factor-α-induced up-regulation of intercellular adhesion molecule-1 (ICAM-1) in respiratory epithelial cells through activator protein-1 and nuclear factor-κB: structure-activity relationships. Mol Pharmacol. 2004;66:683–93.

    Article  CAS  PubMed  Google Scholar 

  29. Bowie A, O’Neill LAJ. Oxidative stress and nuclear factor-κB activation: a reassessment of the evidence in the light of recent discoveries. Biochem Pharmacol. 2000;59:13–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Zulkhairi Zainol, Abdul Rahman Hassan and Nora Asyikin Mohd Salim for technical assistance. This investigation was financially supported by Science Fund (06-01-04-SF0973), Ministry of Science, Technology and Innovation, Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daud A. Israf.

Additional information

Responsible Editor: J. Skotnicki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harasstani, O.A., Moin, S., Tham, C.L. et al. Flavonoid combinations cause synergistic inhibition of proinflammatory mediator secretion from lipopolysaccharide-induced RAW 264.7 cells. Inflamm. Res. 59, 711–721 (2010). https://doi.org/10.1007/s00011-010-0182-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-010-0182-8

Keywords

Navigation