Skip to main content
Log in

Asthma during pregnancy alters immune cell profile and airway epithelial chemokine release

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Pregnancy can influence the course of maternal asthma, but the mechanisms are presently unknown. The aim of the present study was to access maternal immune cell profiles in the presence and absence of asthma and to determine the effect of pregnancy-derived factors on epithelial cell function.

Methods

Cells from the human bronchial epithelial cell line BEAS-2B were treated with plasma from pregnant or nonpregnant asthmatic and nonasthmatic subjects. Cell culture supernatants were collected after 24 h and assayed for IL-6, IL-8, eotaxin, RANTES and sICAM-1 protein using ELISA. Maternal immune cell count and peripheral blood chemotactic response to plasma from pregnant and non-pregnant asthmatic subjects were also assessed.

Results

The presence of maternal asthma during pregnancy was associated with increased monocyte and neutrophil numbers, increased BEAS-2B cell production of IL-8 and sICAM-1 (P < 0.05) and increased chemotactic capacity relative to pregnant women without asthma.

Conclusion

The results of this study suggest that circulating pregnancy-related factors enhance chemotactic mediators in epithelial cells in the presence of asthma. This may be one mechanism that contributes to pregnancy-induced changes in asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schatz M, Harden K, Forsythe A, Chilingar L, Hoffman C, Sperling W, et al. The course of asthma during pregnancy, post partum, and with successive pregnancies: a prospective analysis. J Allergy Clin Immunol. 1988;81:509–17.

    Article  PubMed  CAS  Google Scholar 

  2. Jana N, Vasishta K, Saha SC, Khunnu B. Effect of bronchial asthma on the course of pregnancy, labour and perinatal outcome. J Obstet Gynaecol. 1995;21:227–32.

    CAS  Google Scholar 

  3. Murphy VE, Gibson P, Talbot PI, Clifton VL. Severe asthma exacerbations during pregnancy. Obstet Gynecol. 2005;106:1046–54.

    PubMed  Google Scholar 

  4. Murphy VE, Johnson RF, Wang YC, Akinsanya K, Gibson PG, Smith R, et al. Proteomic study of plasma proteins in pregnant women with asthma. Respirology. 2006;11:41–8.

    Article  PubMed  Google Scholar 

  5. Osei-Kumah A, Ammit AJ, Smith R, Ge Q, Clifton VL. Inflammatory mediator release in normal bronchial smooth muscle cells is altered by pregnant maternal and fetal plasma independent of asthma. Placenta. 2006;27:847–52.

    Article  PubMed  CAS  Google Scholar 

  6. Rothenberg ME, Ownbey R, Mehlhop PD, Loiselle PM, van de Rijn M, Bonventre JV, et al. Eotaxin triggers eosinophil-selective chemotaxis and calcium flux via a distinct receptor and induces pulmonary eosinophilia in the presence of interleukin 5 in mice. Mol Med. 1996;2:334–48.

    PubMed  CAS  Google Scholar 

  7. Garcia-Zepeda EA, Rothenberg ME, Ownbey RT, Celestin J, Leder P, Luster AD. Human eotaxin is a specific chemoattractant for eosinophil cells and provides a new mechanism to explain tissue eosinophilia. Nat Med. 1996;2:449–56.

    Article  PubMed  CAS  Google Scholar 

  8. Larche M, Robinson DS, Kay AB. The role of T lymphocytes in the pathogenesis of asthma. J Allergy Clin Immunol. 2003;111:450–63. quiz 464.

    Article  PubMed  CAS  Google Scholar 

  9. Lazaar AL, Albelda SM, Pilewski JM, Brennan B, Pure E, Panettieri RA Jr. T lymphocytes adhere to airway smooth muscle cells via integrins and CD44 and induce smooth muscle cell DNA synthesis. J Exp Med. 1994;180:807–16.

    Article  PubMed  CAS  Google Scholar 

  10. Campbell AM, Chanez P, Vignola AM, Bousquet J, Couret I, Michel FB, et al. Functional characteristics of bronchial epithelium obtained by brushing from asthmatic and normal subjects. Am Rev Respir Dis. 1993;147:529–34.

    PubMed  CAS  Google Scholar 

  11. Cromwell O, Hamid Q, Corrigan CJ, Barkans J, Meng Q, Collins PD, et al. Expression and generation of interleukin-8, IL-6 and granulocyte–macrophage colony-stimulating factor by bronchial epithelial cells and enhancement by IL-1 beta and tumour necrosis factor-alpha. Immunology. 1992;77:330–7.

    PubMed  CAS  Google Scholar 

  12. Kumlin M, Hamberg M, Granstrom E, Bjorck T, Dahlen B, Matsuda H, et al. 15(S)-hydroxyeicosatetraenoic acid is the major arachidonic acid metabolite in human bronchi: association with airway epithelium. Arch Biochem Biophys. 1990;282:254–62.

    Article  PubMed  CAS  Google Scholar 

  13. Nadel JA. Neurogenic inflammation in airways and its modulation by peptidases. Ann N Y Acad Sci. 1992;664:408–14.

    Article  PubMed  CAS  Google Scholar 

  14. Sousa AR, Poston RN, Lane SJ, Nakhosteen JA, Lee TH. Detection of GM-CSF in asthmatic bronchial epithelium and decrease by inhaled corticosteroids. Am Rev Respir Dis. 1993;147:1557–61.

    PubMed  CAS  Google Scholar 

  15. Rossi GA, Sacco O, Balbi B, Oddera S, Mattioni T, Corte G, et al. Human ciliated bronchial epithelial cells: expression of the HLA-DR antigens and of the HLA-DR alpha gene, modulation of the HLA-DR antigens by gamma-interferon and antigen-presenting function in the mixed leukocyte reaction. Am J Respir Cell Mol Biol. 1990;3:431–9.

    PubMed  CAS  Google Scholar 

  16. Yoon JS, Kim HH, Lee Y, Lee JS. Cytokine induction by respiratory syncytial virus and adenovirus in bronchial epithelial cells. Pediatr Pulmonol. 2007;42:277–82.

    Article  PubMed  Google Scholar 

  17. Sacks GP, Studena K, Sargent K, Redman CW. Normal pregnancy and preeclampsia both produce inflammatory changes in peripheral blood leukocytes akin to those of sepsis. Am J Obstet Gynecol. 1998;179:80–6.

    Article  PubMed  CAS  Google Scholar 

  18. Siegel I, Gleicher N. Peripheral white blood cell alterations in early labor. Diagn Gynecol Obstet. 1981;3:123–6.

    PubMed  CAS  Google Scholar 

  19. Valdimarsson H, Mulholland C, Fridriksdottir V, Coleman DV. A longitudinal study of leucocyte blood counts and lymphocyte responses in pregnancy: a marked early increase of monocyte-lymphocyte ratio. Clin Exp Immunol. 1983;53:437–43.

    PubMed  CAS  Google Scholar 

  20. Borzychowski AM, Croy BA, Chan WL, Redman CW, Sargent IL. Changes in systemic type 1 and type 2 immunity in normal pregnancy and pre-eclampsia may be mediated by natural killer cells. Eur J Immunol. 2005;35:3054–63.

    Article  PubMed  CAS  Google Scholar 

  21. Sacks G, Sargent I, Redman C. Innate immunity in pregnancy. Immunol Today. 2000;21:200–1.

    Article  PubMed  CAS  Google Scholar 

  22. Sacks G, Sargent I, Redman C. An innate view of human pregnancy. Immunol Today. 1999;20:114–8.

    Article  PubMed  CAS  Google Scholar 

  23. Sacks GP, Redman CW, Sargent IL. Monocytes are primed to produce the Th1 type cytokine IL-12 in normal human pregnancy: an intracellular flow cytometric analysis of peripheral blood mononuclear cells. Clin Exp Immunol. 2003;131:490–7.

    Article  PubMed  CAS  Google Scholar 

  24. Mann BS, Chung KF. Blood neutrophil activation markers in severe asthma: lack of inhibition by prednisolone therapy. Respir Res. 2006;7:59.

    Article  PubMed  CAS  Google Scholar 

  25. Silvestri M, Bontempelli M, Giacomelli M, Malerba M, Rossi GA, Di Stefano A, et al. High serum levels of tumour necrosis factor-alpha and interleukin-8 in severe asthma: markers of systemic inflammation? Clin Exp Allergy. 2006;36:1373–81.

    Article  PubMed  CAS  Google Scholar 

  26. Murphy VE, Gibson PG, Giles WB, Zakar T, Smith R, Bisits AM, et al. Maternal asthma is associated with reduced female fetal growth. Am J Respir Crit Care Med. 2003;168:1317–23.

    Article  PubMed  Google Scholar 

  27. National Institute of Health. Guidelines for the diagnosis and management of asthma. NIH publication no. 97-4051. Bethesda, MD: National Heart, Lung and Blood Institute; 1997.

  28. Murphy VE, Gibson PG, Talbot PI, Kessell CG, Clifton VL. Asthma self-management skills and the use of asthma education during pregnancy. Eur Respir J. 2005;26:435–41.

    Article  PubMed  CAS  Google Scholar 

  29. Hung CH, Li CY, Hua YM, Chen CJ, Yang KD, Jong YJ. Effects of leukotriene receptor antagonists on monocyte chemotaxis, p38 and cytoplasmic calcium. Pediatr Allergy Immunol. 2006;17:250–8.

    Article  PubMed  Google Scholar 

  30. Bayram H, Devalia JL, Khair OA, Abdelaziz MM, Sapsford RJ, Sagai M, et al. Comparison of ciliary activity and inflammatory mediator release from bronchial epithelial cells of nonatopic nonasthmatic subjects and atopic asthmatic patients and the effect of diesel exhaust particles in vitro. J Allergy Clin Immunol. 1998;102:771–82.

    Article  PubMed  CAS  Google Scholar 

  31. Bayram H, Devalia JL, Sapsford RJ, Ohtoshi T, Miyabara Y, Sagai M, et al. The effect of diesel exhaust particles on cell function and release of inflammatory mediators from human bronchial epithelial cells in vitro. Am J Respir Cell Mol Biol. 1998;18:441–8.

    PubMed  CAS  Google Scholar 

  32. Bayram H, Sapsford RJ, Abdelaziz MM, Khair OA. Effect of ozone and nitrogen dioxide on the release of proinflammatory mediators from bronchial epithelial cells of nonatopic nonasthmatic subjects and atopic asthmatic patients in vitro. J Allergy Clin Immunol. 2001;107:287–94.

    Article  PubMed  CAS  Google Scholar 

  33. Erzurum SC. Inhibition of tumor necrosis factor alpha for refractory asthma. N Engl J Med. 2006;354:754–8.

    Article  PubMed  CAS  Google Scholar 

  34. Kwon OJ, Au BT, Collins PD, Adcock IM, Mak JC, Robbins RR, et al. Tumor necrosis factor-induced interleukin-8 expression in cultured human airway epithelial cells. Am J Physiol. 1994;267:L398–405.

    PubMed  CAS  Google Scholar 

  35. Standiford TJ, Kunkel SL, Basha MA, Chensue SW, Lynch JP 3rd, Toews GB, et al. Interleukin-8 gene expression by a pulmonary epithelial cell line. A model for cytokine networks in the lung. J Clin Invest. 1990;86:1945–53.

    Article  PubMed  CAS  Google Scholar 

  36. Nakamura H, Yoshimura K, McElvaney NG, Crystal RG. Neutrophil elastase in respiratory epithelial lining fluid of individuals with cystic fibrosis induces interleukin-8 gene expression in a human bronchial epithelial cell line. J Clin Invest. 1992;89:1478–84.

    Article  PubMed  CAS  Google Scholar 

  37. Brown JR, Kleimberg J, Marini M, Sun G, Bellini A, Mattoli S. Kinetics of eotaxin expression and its relationship to eosinophil accumulation and activation in bronchial biopsies and bronchoalveolar lavage (BAL) of asthmatic patients after allergen inhalation. Clin Exp Immunol. 1998;114:137–46.

    Article  PubMed  CAS  Google Scholar 

  38. Holgate ST. Epithelial damage and response. Clin Exp Allergy. 2000;30(Suppl 1):37–41.

    Article  PubMed  Google Scholar 

  39. Holgate ST. Inflammatory and structural changes in the airways of patients with asthma. Respir Med. 2000;94(Suppl D):S3–6.

    PubMed  Google Scholar 

  40. Pueringer RJ, Hunninghake GW. Inflammation and airway reactivity in asthma. Am J Med. 1992;92:32S–8S.

    Article  PubMed  CAS  Google Scholar 

  41. Shiels IA, Bowler SD, Taylor SM. Airway smooth muscle proliferation in asthma: the potential of vascular leakage to contribute to pathogenesis. Med Hypotheses. 1995;45:37–40.

    Article  PubMed  CAS  Google Scholar 

  42. Sukkar MB, Hughes JM, Johnson PR, Armour CL. GM-CSF production from human airway smooth muscle cells is potentiated by human serum. Mediat Inflamm. 2000;9:161–8.

    Article  CAS  Google Scholar 

  43. Holgate ST, Lackie PM, Davies DE, Roche WR, Walls AF. The bronchial epithelium as a key regulator of airway inflammation and remodelling in asthma. Clin Exp Allergy. 1999;29(Suppl 2):90–5.

    Article  PubMed  Google Scholar 

  44. Leonard EJ, Yoshimura T. Neutrophil attractant/activation protein-1 (NAP-1 [interleukin-8]). Am J Respir Cell Mol Biol. 1990;2:479–86.

    PubMed  CAS  Google Scholar 

  45. Smith WB, Gamble JR, Clark-Lewis I, Vadas MA. Interleukin-8 induces neutrophil transendothelial migration. Immunology. 1991;72:65–72.

    PubMed  CAS  Google Scholar 

  46. Larsen CG, Anderson AO, Appella E, Oppenheim JJ, Matsushima K. The neutrophil-activating protein (NAP-1) is also chemotactic for T lymphocytes. Science. 1989;243:1464–6.

    Article  PubMed  CAS  Google Scholar 

  47. Alam R, York J, Boyars M, Stafford S, Grant JA, Lee J, et al. Increased MCP-1, RANTES, and MIP-1alpha in bronchoalveolar lavage fluid of allergic asthmatic patients. Am J Respir Crit Care Med. 1996;153:1398–404.

    PubMed  CAS  Google Scholar 

  48. Venge J, Lampinen M, Hakansson L, Rak S, Venge P. Identification of IL-5 and RANTES as the major eosinophil chemoattractants in the asthmatic lung. J Allergy Clin Immunol. 1996;97:1110–5.

    Article  PubMed  CAS  Google Scholar 

  49. Palframan RT, Collins PD, Severs NJ, Rothery S, Williams TJ, Rankin SM. Mechanisms of acute eosinophil mobilization from the bone marrow stimulated by interleukin 5: the role of specific adhesion molecules and phosphatidylinositol 3-kinase. J Exp Med. 1998;188:1621–32.

    Article  PubMed  CAS  Google Scholar 

  50. Lilly CM, Nakamura H, Kesselman H, Nagler-Anderson C, Asano K, Garcia-Zepeda EA, et al. Expression of eotaxin by human lung epithelial cells: induction by cytokines and inhibition by glucocorticoids. J Clin Invest. 1997;99:1767–73.

    Article  PubMed  CAS  Google Scholar 

  51. Sampson AP. The role of eosinophils and neutrophils in inflammation. Clin Exp Allergy. 2000;30(Suppl 1):22–7.

    Article  PubMed  Google Scholar 

  52. Arnold R, Konig W. ICAM-1 expression and low-molecular-weight G-protein activation of human bronchial epithelial cells (A549) infected with RSV. J Leukoc Biol. 1996;60:766–71.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by The Asthma Foundation of New South Wales, the National Health and Medical Research Council of Australia, the NSW Department of Health and the Hunter Medical Research Institute. Dr. Vicki Clifton was a recipient of the Arthur Wilson Memorial Scholarship from the Royal Australian and New Zealand College of Obstetricians and Gynaecologists Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicki L. Clifton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osei-Kumah, A., Wark, P.A.B., Smith, R. et al. Asthma during pregnancy alters immune cell profile and airway epithelial chemokine release. Inflamm. Res. 59, 349–358 (2010). https://doi.org/10.1007/s00011-009-0102-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-009-0102-y

Keywords

Navigation