Skip to main content
Log in

The James constant in Radon planes

  • Published:
Aequationes mathematicae Aims and scope Submit manuscript

Abstract

To describe the geometry of normed spaces, many geometric constants have been investigated. Among them, the James constant has been treated by a lot of mathematicians. Here we also consider Birkhoff orthogonality and isosceles orthogonality. The usual orthogonality in inner product spaces and isosceles orthogonality in normed spaces are symmetric. However, Birkhoff orthogonality is not symmetric in general normed spaces. A two-dimensional normed space in which Birkhoff orthogonality is symmetric is called Radon plane. We consider the values of James constants in Radon planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alonso, J.: Uniqueness properties of isosceles orthogonality in normed linear spaces. Ann. Sci. Math. Quebec 18, 25–38 (1994)

    MathSciNet  MATH  Google Scholar 

  2. Alonso, J., Martini, H., Wu, S.: On Birkhoff orthogonality and isosceles orthogonality in normed linear spaces. Aequat. Math. 83, 153–189 (2012)

    Article  MathSciNet  Google Scholar 

  3. Amir, D.: Characterization of Inner Product Spaces, Operator Theory: Advances and Applications. Birkhauser, Basel (1986)

    Book  Google Scholar 

  4. Balestro, V., Martini, H., Teixeira, R.: Geometric properties of a sine function extendable to arbitrary normed planes. Monatsh. Math. 182, 781–800 (2017)

    Article  MathSciNet  Google Scholar 

  5. Balestro, V., Martini, H., Teixeira, R.: Geometric constants for quantifying the difference between orthogonality types. Ann. Funct. Anal. 7, 656–671 (2016)

    Article  MathSciNet  Google Scholar 

  6. Balestro, V., Martini, H., Teixeira, R.: A new construction of Radon curves and related topics. Aequat. Math. 90, 1013–1024 (2016)

    Article  MathSciNet  Google Scholar 

  7. Birkhoff, G.: Orthogonality in linear metric spaces. Duke Math. J. 1, 169–172 (1935)

    Article  MathSciNet  Google Scholar 

  8. Bonsall, F.F., Duncan, J.: Numerical Ranges II., London Math. Soc. Lecture Note Series. Cambridge University Press, New York (1973)

    Book  Google Scholar 

  9. Day, M.M.: Some characterization of inner-product spaces. Trans. Am. Math. Soc. 62, 320–337 (1947)

    Article  MathSciNet  Google Scholar 

  10. Gao, J., Lau, K.-S.: On geometry of spheres in normed linear spaces. J. Austral. Math. Soc. Ser. A 48, 101–112 (1990)

    Article  MathSciNet  Google Scholar 

  11. James, R.C.: Orthogonality in normed linear spaces. Duke Math. J. 12, 291–302 (1945)

    Article  MathSciNet  Google Scholar 

  12. James, R.C.: Orthogonality and linear functionals in normed linear spaces. Trans. Am. Math. Soc. 61, 265–292 (1947)

    Article  MathSciNet  Google Scholar 

  13. James, R.C.: Inner product in normed linear space. Bull. Am. Math. Soc. 53, 559–566 (1947)

    Article  MathSciNet  Google Scholar 

  14. Jimenez-Melado, A., Llorens-Fuster, E., Mazcunan-Navarro, E.M.: The Dunkl–Williams constant, convexity, smoothness and normal structure. J. Math. Anal. Appl. 342, 298–310 (2008)

    Article  MathSciNet  Google Scholar 

  15. Ji, D., Wu, S.: Quantitative characterization of the difference between Birkhoff orthogonality and isosceles orthogonality. J. Math. Anal. Appl. 323, 1–7 (2006)

    Article  MathSciNet  Google Scholar 

  16. Komuro, N., Saito, K.-S., Tanaka, R.: On the class of Banach space with James constant \(\sqrt{2}\). Math. Nachr. 289, 1005–1020 (2016)

    Article  MathSciNet  Google Scholar 

  17. Komuro, N., Mitani, K.-I., Saito, K.-S., Tanaka, R., Tomizawa, Y.: A comparison between James and von Neumann–Jordan constants. Mediterr. J. Math. 14, 168 (2017)

    Article  MathSciNet  Google Scholar 

  18. Martini, H., Swanepoel, K.J.: The geometry of Minkowski spaces—a survey. II. Expo. Math. 22, 93–144 (2004)

    Article  MathSciNet  Google Scholar 

  19. Martini, H., Swanepoel, K.J.: Antinorms and radon curves. Aequ. Math. 72, 110–138 (2006)

    Article  MathSciNet  Google Scholar 

  20. Mitani, K.-I., Saito, K.-S.: Dual of two dimensional Lorentz sequence spaces. Nonlinear Anal. 71, 5238–5247 (2009)

    Article  MathSciNet  Google Scholar 

  21. Mitani, K.-I., Saito, K.-S., Suzuki, T.: Smoothness of absolute norms on \({\mathbb{C}}^n\). J. Convex Anal. 10, 89–107 (2003)

    MathSciNet  MATH  Google Scholar 

  22. Mitani, K.-I., Oshiro, S., Saito, K.-S.: Smoothness of \(\psi \)-ditect sums of Banach spaces. Math. Inequal. Appl. 8, 147–157 (2005)

    MathSciNet  MATH  Google Scholar 

  23. Mizuguchi, H.: The constants to measure the differences between Birkhoff and isosceles orthogonalities. Filomat 30, 2761–2770 (2016)

    Article  MathSciNet  Google Scholar 

  24. Mizuguchi, H.: The differences between Birkhoff and isosceles orthogonalities in radon plane. Extracta Math. 32, 173–208 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Papini, P.L., Wu, S.: Measurements of differences between orthogonality types. J. Math. Anal. Appl. 397, 285–291 (2013)

    Article  MathSciNet  Google Scholar 

  26. Saito, K.-S., Kato, M., Takahashi, Y.: Von Neumann–Jordan constant of absolute normalized norms on \({\mathbb{C}}^2\). J. Math. Anal. Appl. 244, 515–532 (2000)

    Article  MathSciNet  Google Scholar 

  27. Szostok, T.: On a generalization of the sine function. Glas. Mat. Ser. III(38), 29–44 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyasu Mizuguchi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mizuguchi, H. The James constant in Radon planes. Aequat. Math. 94, 201–217 (2020). https://doi.org/10.1007/s00010-020-00698-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00010-020-00698-2

Keywords

Mathematics Subject Classification

Navigation