Skip to main content
Log in

Around Jensen’s inequality for strongly convex functions

  • Published:
Aequationes mathematicae Aims and scope Submit manuscript

Abstract

In this paper we use basic properties of strongly convex functions to obtain new inequalities including Jensen type and Jensen–Mercer type inequalities. Applications for special means are pointed out as well. We also give a Jensen’s operator inequality for strongly convex functions. As a corollary, we improve the Hölder-McCarthy inequality under suitable conditions. More precisely we show that if \(Sp\left( A \right) \subset \left( 1,\infty \right) \), then

$$\begin{aligned} {{\left\langle Ax,x \right\rangle }^{r}}\le \left\langle {{A}^{r}}x,x \right\rangle -\frac{{{r}^{2}}-r}{2}\left( \left\langle {{A}^{2}}x,x \right\rangle -{{\left\langle Ax,x \right\rangle }^{2}} \right) ,\quad r\ge 2 \end{aligned}$$

and if \(Sp\left( A \right) \subset \left( 0,1 \right) \), then

$$\begin{aligned} \left\langle {{A}^{r}}x,x \right\rangle \le {{\left\langle Ax,x \right\rangle }^{r}}+\frac{r-{{r}^{2}}}{2}\left( {{\left\langle Ax,x \right\rangle }^{2}}-\left\langle {{A}^{2}}x,x \right\rangle \right) ,\quad 0<r<1 \end{aligned}$$

for each positive operator A and \(x\in \mathcal {H}\) with \(\left\| x \right\| =1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamek, M.: On a problem connected with strongly convex functions. Math. Inequal. Appl. 19(4), 1287–1293 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Dragomir, S.S.: Bounds for the normalized Jensen functional. Bull. Aust. Math. Soc. 74(3), 471–476 (2006)

    Article  MATH  Google Scholar 

  3. Hiriart-Urruty, J.B., Lemaréchal, C.: Fundamentals of Convex Analysis. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  4. Ivelić, S., Matković, A., Pečarić, J.: On a Jensen–Mercer operator inequality. Banach J. Math. Anal. 5(1), 19–28 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kian, M.: Operator Jensen inequality for superquadratic functions. Linear Algebra Appl. 456, 82–87 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Liao, W., Wu, J., Zhao, J.: New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant. Taiwan. J. Math. 19(2), 467–479 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Matković, A., Pečarić, J., Perić, I.: A variant of Jensen’s inequality of Mercer’s type for operators with applications. Linear Algebra Appl. 418(2), 551–564 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Matharu, J.S., Moslehian, M.S., Aujla, J.S.: Eigenvalue extensions of Bohr’s inequality. Linear Algebra Appl. 435(2), 270–276 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. McCarthy, C.A.: \({{c}_{p}}\). Isr. J. Math. 5, 249–271 (1967)

    Article  Google Scholar 

  10. Mercer, A.M.: A monotonicity property of power means. J. Inequal. Pure Appl. Math. 3(3), Article 40 (2002)

  11. Mercer, A.M.: A variant of Jensen’s inequality. J. Inequal Pure Appl. Math. 4(4), Article 73 (2003)

  12. Mitroi, F.-C.: Estimating the normalized Jensen functional. J. Math. Inequal. 5(4), 507–521 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mitroi-Symeonidis, F.-C., Minculete, N.: On the Jensen functional and the strong convexity. Bull. Malays. Math. Sci. Soc. (2016). doi:10.1007/s40840-015-0293-z

    MATH  Google Scholar 

  14. Mond, B., Pečarić, J.: Convex inequalities in Hilbert space. Houston J. Math. 19, 405–420 (1993)

    MathSciNet  MATH  Google Scholar 

  15. Merentes, N., Nikodem, K.: Remarks on strongly convex functions. Aequ. Math. 80(1–2), 193–199 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nelson, M., Nikodem, K., Rivas, S.: Remarks on strongly Wright-convex functions. Ann. Polonici Math. 102(3), 271–278 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Niezgoda, M.: A generalization of Mercer’s result on convex functions. Nonlinear Anal. 71(7), 2771–2779 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nikodem, K.: On Strongly Convex Functions and Related Classes of Functions, Handbook of Functional Equations, pp. 365–405. Springer, New York (2014)

    MATH  Google Scholar 

  19. Nikodem, K., Páles, Z.: Characterizations of inner product spaces by strongly convex functions. Banach J. Math. Anal. 5(1), 83–87 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Polyak, B.T.: Existence theorems and convergence of minimizing sequences in extremum problems with restrictions. Sov. Math. Dokl. 7, 72–75 (1966)

    Google Scholar 

  21. Roberts, A.W., Varberg, D.E.: Convex Functions. Academic, New York (1973)

    MATH  Google Scholar 

  22. Simić, S.: Best possible global bounds for Jensen functional. Proc. Am. Math. Soc. 138(7), 2457–2462 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zuo, H., Shi, G., Fujii, M.: Refined Young inequality with Kantorovich constant. J. Math. Inequal. 5(4), 551–556 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Erfanian Omidvar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, H.R., Omidvar, M.E., Adil Khan, M. et al. Around Jensen’s inequality for strongly convex functions. Aequat. Math. 92, 25–37 (2018). https://doi.org/10.1007/s00010-017-0496-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00010-017-0496-5

Mathematics Subject Classification

Keywords

Navigation