Skip to main content
Log in

On one sided ideals of a semiprime ring with generalized derivations

  • Published:
Aequationes mathematicae Aims and scope Submit manuscript

Abstract

Let R be a ring with center Z(R). An additive mapping \({F : R \longrightarrow R}\) is said to be a generalized derivation on R if there exists a derivation \({d : R \longrightarrow R}\) such that F(xy) = F(x)y + xd(y), for all \({x, y \in R}\) (the map d is called the derivation associated with F). Let R be a semiprime ring and U be a nonzero left ideal of R. In the present note we prove that if R admits a generalized derivation F, d is the derivation associated with F such that d(U) ≠ (0) then R contains some nonzero central ideal, if one of the following conditions holds: (1) R is 2-torsion free and \({F(xy) \in Z(R)}\), for all \({x, y \in U}\), unless F(U)U = UF(U) = Ud(U) = (0); (2) \({F(xy) \mp yx \in Z(R)}\), for all \({x,y \in U}\); (3) \({F(xy) \mp [x,y] \in Z(R)}\), for all \({x,y \in U}\); (4) F ≠ 0 and F([x,y]) = 0, for all \({x, y \in U}\), unless Ud(U) = (0); (5) F ≠ 0 and \({F([x, y]) \in Z(R)}\), for all \({x, y \in U}\), unless either d(Z(R))U = (0) or Ud(U) = (0)n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brešar M.: Centralizing mappings and derivations in prime rings. J. Algebra 156, 385–394 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Daif M.N., Bell H.E.: Remarks on derivations on semiprime rings. Int. J. Math. Math. Sci. 15(1), 205–206 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dhara, B.: Remarks on generalized derivations in prime and semiprime rings. Int. J. Math. Math. Sci. ID 646587 (2010)

  4. Fošner A., Fošner M., Vukman J.: Identities with derivations in rings. Glas. Mat. 46, 339–349 (2011)

    Article  MATH  Google Scholar 

  5. Fošner A., Vukman J.: Some results concerning additive mappings and derivations on semiprime rings. Publ. Math. Debrecen 78, 575–581 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fošner A., Vukman J.: On certain functional equations related to Jordan triple \({(\vartheta, \varphi)}\) derivations on semiprime rings. Monatsh. Math. 162, 157–165 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Herstein I.N.: Rings with Involution. University of Chicago Press, Chicago (1976)

    MATH  Google Scholar 

  8. Hvala B.: Generalized derivations in rings. Commun. Algebra 26, 1147–1166 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lam T.Y.: A First Course in Noncommutative Rings. Graduate Texts in Mathematics. Springer, Berlin (2001)

    Book  Google Scholar 

  10. Lanski C.: An Engel condition with derivation for left ideals. Proc. Am. Math. Soc. 125(2), 339–345 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lanski C.: Left ideals and derivations in semiprime rings. J. Algebra 277, 658–667 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lee T.K.: Generalized derivations of left faithful rings. Commun. Algebra 27(8), 4057–4073 (1999)

    Article  MATH  Google Scholar 

  13. Quadri M.A., Khan M.S., Rehman N.: Generalized derivations and commutativity of prime rings. Indian J. Pure Appl. Math. 34(9), 1393–1396 (2003)

    MathSciNet  MATH  Google Scholar 

  14. Vukman J.: A note on generalized derivations of semiprime rings. Taiwan J. Math. 11, 367–370 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Zalar B.: On centralizers of semiprime rings. Comment. Math. Univ. Carol. 32(4), 609–614 (1991)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo De Filippis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, A., De Filippis, V. & Shujat, F. On one sided ideals of a semiprime ring with generalized derivations. Aequat. Math. 85, 529–537 (2013). https://doi.org/10.1007/s00010-012-0150-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00010-012-0150-1

Mathematics Subject Classification (2000)

Keywords

Navigation