Skip to main content
Log in

An exactly solvable self-convolutive recurrence

  • Published:
Aequationes mathematicae Aims and scope Submit manuscript

Abstract

We consider a self-convolutive recurrence whose solution is the sequence of coefficients in the asymptotic expansion of the logarithmic derivative of the confluent hypergeometric function U(a, b, z). By application of the Hilbert transform we convert this expression into an explicit, non-recursive solution in which the nth coefficient is expressed as the (n − 1)th moment of a measure, and also as the trace of the (n − 1)th iterate of a linear operator. Applications of these sequences, and hence of the explicit solution provided, are found in quantum field theory as the number of Feynman diagrams of a certain type and order, in Brownian motion theory, and in combinatorics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz M., Stegun I.A.: Handbook of Mathematical Functions. Dover, New York (1964)

    MATH  Google Scholar 

  2. Bender C.M., Orszag S.A.: Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill, New York (1978)

    MATH  Google Scholar 

  3. Cassels, J.W.S.: Local Fields. CUP (1986)

  4. Cvitanović P.: Asymptotic estimates and gauge invariance. Nucl. Phys. B127, 176–188 (1977)

    Article  Google Scholar 

  5. Cvitanović P., Lautrup B., Pearson R.B.: Number and weights of Feynman diagrams. Phys. Rev. D 18(6), 1939–1949 (1978)

    Article  Google Scholar 

  6. Deift, P.: Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach. AMS (2000)

  7. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. CUP (2009)

  8. Janson S.: The Wiener index of simply generated random trees. Random Struct. Algorithms 22, 337–358 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Janson S.: Brownian excursion area, Wright’s constants in graph enumeration, and other Brownian areas. Prob. Surv. 4, 80–145 (2007)

    MATH  MathSciNet  Google Scholar 

  10. Kearney M.J., Majumdar S.N., Martin R.J.: The first-passage area for drifted Brownian motion and the moments of the Airy distribution. J. Phys. A: Math. Theor. 40, F863–F869 (2007)

    Article  MathSciNet  Google Scholar 

  11. Kearney M.J., Martin R.J.: Airy asymptotics: the logarithmic derivative and its reciprocal. J. Phys. A: Math. Theor. 42, 425201 (2009)

    Article  MathSciNet  Google Scholar 

  12. Marčenko V.A., Pastur L.A.: Distribution of eigenvalues for some sets of random matrices. Math. USSR Sbornik 1(4), 457–483 (1967)

    Article  Google Scholar 

  13. Marple S.L. Jr: Digital Spectral Analysis with Applications. Prentice-Hall, Englewood Cliffs (1987)

    Google Scholar 

  14. Molinari L.G.: Hedin’s equations and enumeration of Feynman diagrams. Phys. Rev. B71, 113102 (2005)

    Google Scholar 

  15. Pavlyukh Y., Hübner W.: Analytic solution of Hedin’s equations in zero dimensions. J. Math. Phys. 48, 052109 (2007)

    Article  MathSciNet  Google Scholar 

  16. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C++. CUP (2002)

  17. Schikhof, W.: Ultrametric Calculus. CUP (1984)

  18. Sengupta, A.M., Mitra, P.P.: Distributions of singular values for some random matrices. Phys. Rev. E 60, 3389–3392 (1999). Also arXiv:cond-mat #9709283 (1997)

    Google Scholar 

  19. Sloane, N.J.A.: Handbook of Integer Sequences. Academic Press (1973). http://www.research.att.com/~njas/sequences

  20. Wigner E.: Characteristic vectors of bordered matrices with infinite dimensions. Ann. Math. 62, 548–564 (1955)

    Article  MathSciNet  Google Scholar 

  21. Wigner E.: On the distribution of the roots of certain symmetric matrices. Ann. Math. 67, 325–328 (1958)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, R.J., Kearney, M.J. An exactly solvable self-convolutive recurrence. Aequat. Math. 80, 291–318 (2010). https://doi.org/10.1007/s00010-010-0051-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00010-010-0051-0

Mathematics Subject Classification (2000)

Navigation