Skip to main content
Log in

Normalized Ground-State Solution for the Schrödinger–KdV System

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study the existence of ground-state solution for the coupled nonlinear Schrödinger–Korteweg–de Vries system

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta u+\lambda _{1}u=u^{3}+\beta uv&{}\quad \mathrm {in}\ \mathbb {R}^{N},\\ -\Delta v+\lambda _{2}v=\frac{1}{2}v^{2}+\frac{1}{2}\beta u^{2}&{} \quad \mathrm {in}\ \mathbb {R}^{N},\\ \end{array} \right. \end{aligned}$$

under the constrains

$$\begin{aligned} \int _{\mathbb {R}^{N}}|u|^2{\text {d}}x=a,\ \ \int _{\mathbb {R}^{N}}|v|^2{\text {d}}x=b,\\ \end{aligned}$$

where \(N=1,2\), \(\beta >0\) and \(a, b>0\) are prescribed. In the system, the parameters \(\lambda _{1}\) and \(\lambda _{2}\) are unknown and will correspond to the Lagrange multipliers. Based on the variational method and rearrangement techniques, we prove that there exists a positive ground state solution for the system by the precompactness of the minimizing sequences, up to translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartsch, T., Jeanjean, L.: Normalized solutions for nonlinear Schrödinger systems. Proc. R. Soc. Edinb. Sect. A 148(2), 225–242 (2018)

    Article  MATH  Google Scholar 

  2. Bartsch, T., Soave, N.: A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems. J. Funct. Anal. 272(12), 4998–5037 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bartsch, T., Jeanjean, L., Soave, N.: Normalized solutions for a system of coupled cubic Schrödinger equations on \({\mathbb{R} }^3\). J. Math. Pures Appl. 106(4), 583–614 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cingolani, S., Gallo, M., Tanaka, K.: Normalized solutions for fractional nonlinear scalar field equations via Lagrangian formulation. Nonlinearity 34(6), 4017–4056 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gou, T., Jeanjean, L.: Existence and orbital stability of standing waves for nonlinear Schrödinger systems. Nonlinear Anal. 144, 10–22 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gou, T., Jeanjean, L.: Multiple positive normalized solutions for nonlinear Schrödinger systems. Nonlinearity 31(5), 2319–2345 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ikoma, N.: Compactness of minimizing sequences in nonlinear Schrödinger systems under multiconstraint conditions. Adv. Nonlinear Stud. 14(1), 115–136 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ikoma, N., Tanaka, K.: A note on Deformation argument for \(L^{2}\) normalized solutions of nonlinear system Schrodinger Equations and Systems. Adv. Differ. Equ. 24(11–12), 609–646 (2019)

    MATH  Google Scholar 

  9. Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. 28(10), 1633–1659 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kwong, M.K.: Uniqueness of positive solutions of \(\Delta u-u+u^p=0\) in \({\mathbb{R} ^{N}}\). Arch. Rational Mech. Anal. 105(3), 243–266 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, G.B., Luo, X.: Existence and multiplicity of normalized solutions for a class of fractional Choquard equations. Sci. China Math. 63(3), 539–558 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liang, Z., Liu, J.: Existence of constrained minimizer for a quadratically coupled Schrödinger systems. Appl. Anal. 99(1), 29–39 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lieb, E.H., Loss, M.: Analysis, 2nd ed. In: Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence (2001)

  14. Shibata, M.: A new rearrangement inequality and its application for \(L^{2}\)-constraint minimizing problems. Math. Z. 287(1–2), 341–359 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities. J. Differ. Equ. 269(9), 6941–6987 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Weinstein, M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87(4), 567–576 (1982/1983)

  17. Willem, M.: Minimax Theorems. Birkhauser, Basel (1996)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Ping Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by National Natural Science Foundation of China (No. 11971393).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, FF., Wu, XP. & Tang, CL. Normalized Ground-State Solution for the Schrödinger–KdV System. Mediterr. J. Math. 19, 254 (2022). https://doi.org/10.1007/s00009-022-02182-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-022-02182-4

Keywords

Mathematics Subject Classification

Navigation